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Abstract—In this paper FSMlock is proposed, which, contrary
to the vast majority of the already existing sequential logic-locking
techniques that augment or modify a circuit’s Finite State Machine
(FSM) leaving untouched various normal-operation parts of it,
locks the entire FSM using two keys to erase structural traces, and
a few simple modifications to the Register-Transfer Level (RTL)
description of the circuit. Additionally, FSMlock incorporates a
new, efficient, RTL-applicable output corruption (OC) scheme.
FSMlock is evaluated against all different kinds of sequential
oracle-based attacks, while even after the attacks’ application,
high OC is obtained. Finally, Verilog RTL descriptions of the
ITC’99 benchmark circuits, converted from VHDL to be used in
our experiments, are made publicly available.

Index Terms—logic locking, FSM locking, output corruption

I. INTRODUCTION
Logic locking is a well-established hardware security ap-

proach that protects a design by inserting into it key-driven
hardware structures, which alter its operation in the presence
of wrong keys. Depending on whether the locking hardware is
placed into the combinational part of a circuit or if its Finite
State Machine (FSM) is redesigned for security, logic-locking
techniques are divided into combinational and sequential.

A large class of attacks on logic locking are the oracle-based
ones. They assume that the attacker is in possession of an
activated, functional copy of the circuit, the oracle, which can
be used to obtain the correct output for any circuit input. The
gate-level netlist of the locked circuit is also available to the
attacker. Although attacks on combinational locking have been
tackled [1], attacks that make use of circuits’ sequential opera-
tion (sequential ones) also exist. They can be roughly classified
into three categories: i) combined structural+functional [2],
[3], which try to reveal an obfuscated FSM through structural
analysis of the corresponding circuit and subsequent functional
analysis of it. ii) Attacks that use a model checker to unroll the
circuit and then apply the SAT attack, like KC2 [4] and Fun-
SAT [5]. They are very effective, while their computational cost
constantly improves [4]–[6]. iii) Approximate attacks, like the
Particle Swarm Optimization (PSO)-guided one [7], that try to
find approximate keys using low-complexity computations.

Concerning sequential locking techniques, most of them,
including HARPOON [8], interlocking [9], state deflection
[10], ReTrustFSM [11], Dual Key (DK) Lock [12], augment
a circuit’s FSM to protect its normal functionality. However,
the original FSM can either be separated from its added parts,
or access to normal-operation parts of the modified FSM is
allowed. Also, the correct reset state is reachable, which, even if
it does not belong to the original FSM, serves as an entry point
to attacks. The weaknesses of [8]–[10] have been discussed
in [11]. In ReTrustFSM, the necessary ”lockedFSM” state
must meet very strict requirements, and should be located at

the deepest FSM stage [11], thus allowing plenty of normal
functionality before reaching the FSM’s obfuscated part. DK
Lock [12] is a two-phase approach that uses one key for circuit
activation via up-counting for a specific number of cycles,
while the second key is driven to key gates after activation.
Nevertheless, in the netlist, the activation counter can be
bypassed by forcing the activation signal to its enable value,
transforming DK Lock into a simple key-gate insertion scheme.

A few sequential locking schemes that do not rely on FSM
augmentation also exist. JANUS [13] controls with keys the D
or T state-flip-flop functionality, after splitting the FSM’s State
Transition Graph (STG) into two parts. A SAT-based attack on
JANUS has been described in [11]. Entire FSM hiding has been
exploited in [14], but the characteristics of the cellular automata
employed for state encoding, were utilized to break the method
[15]. Transition obfuscation through state permutation for full
FSM hiding was proposed in [16]. However, the fact that states
are just a permutation of the original ones, allows the attacker to
start from the reset state of the oracle and, by forcing different
states in the netlist’s state register, to find which one matches
the output behavior of that of the oracle (using various inputs).
The same process can then be repeated for the next oracle state.

Another important locking aspect is Output Corruption (OC),
i.e., the percentage of bits per output pattern that differ between
correct and faulty operation. In sequential locking, OC is either
not discussed, or, usually, relies on some combinational locking
scheme (typically key-gate insertion), which should be applied
at a different design level and does not guarantee adequate OC.

To address all the above issues, FSMlock is proposed in this
paper. Our contributions are: a) entire FSM hiding, including
the reset state, b) a new, efficient OC scheme that is applied at
RTL, like the locking process. c) The PSO-guided attack has
been considered and implemented for the evaluation of FSM-
lock. d) Verilog RTL descriptions of the ITC’99 benchmarks
have been generated, verified and made available [17].

II. THE FSMLOCK DEFENSE

A. FSM Protection
First of all, we assume that the attacker has access to

the locked gate-level netlist of the circuit under attack, and
knowledge of the locking scheme and the locations of the
key inputs. Also, an activated integrated circuit, i.e., oracle, is
available, but without scan access. Hence, the attacker can use
only the primary inputs and outputs of the activated circuit.

The main idea of FSMlock is to completely hide from the
attacker the states of a circuit’s FSM and the transitions between
them, so that they are not recognizable neither by structural
analysis, nor by netlist simulation. To do so, a single key is not



Fig. 1. FSM locking example. (a) Original FSM. (b) Random state encoding after increasing state register’s length. (c) Select key to be used in assignment statements
and calculate the corresponding value for every state of the FSM. (d) Select key for conditional statements and calculate the respective value for each FSM state.

sufficient as will be explained in a while; instead, two different
keys are used. Please note that the utilized keys are constant,
and fed to special key inputs of the circuit from a tamper-proof
memory, as in the case of combinational locking schemes. An
example demonstrating the steps to modify an FSM according
to the proposed FSMlock approach, is shown in Fig. 1. Fig.
1(a) depicts the original FSM that consists of four states, the
encoding of which is binary (from 00 to 11).

The first step, before locking, is to create a very big state
space and, from it, to assign a new, random state encoding to
the FSM. This is shown in Fig. 1(b), where the 2-bit encoding
of the original FSM has been replaced with a random 3-bit
one. Of course, in real implementations, the states’ size will
increase more so that it becomes equal to the key size. The
reason for this re-encoding step is simple: if the locked states’
length were small, then a brute-force simulation attack would
easily break the locking, as key size would also be small.

Next, to totally hide all state values of an FSM, we should
at first consider where they appear in its RTL description. State
values can be found in state variables’ assignment statements
(on their right-hand expressions), and in conditional statements
where state variables are checked. We handle the former
first, by defining a key specifically for assignment statements
(assg key). Then, for every state-encoding value, we calculate
the corresponding assignment value (assg val), i.e., the value
that should be XORed with assg key to get the actual encoding
value (i.e., for state i, state vali = assg vali ⊕ assg key).
For example, in Fig. 1(c), assume that assg key = 100. The
assg val of state 3, with actual value 001, will be assg key⊕
001 = 101. After assg vals’ calculation, in all right-hand
expressions of state-variable assignments, the actual state values
are replaced by the corresponding bitwise XOR operation. As
an example, the very common: state <= next state;
assignment in FSM descriptions in Verilog, is replaced by:

state <= assg valnext state
∧assg key;

where ∧ is Verilog’s bitwise XOR operator. This way, the actual
FSM’s state-encoding values can be neither structurally identi-
fied, as they are not directly used in assignments, nor retrieved
by simulation, unless the correct key is known. The FSM’s
RTL description contains and, hence, the implemented circuit
hardcodes, the states’ assg vals, which are useless as they
cannot be associated with actual states without the assg key.

At this point, there are two issues that need to be discussed.
The first one is that after random state encoding (Step 1), no
state value should be equal to all-zeros. In such a case, the cor-
responding assg val would be equal to the assg key compro-
mising security. The second is that the described assignment-
statements’ modification is applied everywhere in the protected
FSM, even in the reset-case assignment. Thus, the reset state
is unknown to untrusted parties, i.e., the attacker is unaware of
the starting point of circuit’s operation. This is important, since

most attacks consider the circuit’s reset state known. We note
that in the KC2 attack’s publication [4], it is mentioned that
”an unknown initial state can also be modeled using additional
key-variables”. FSMlock protects all states though, not just the
initial one, and all the transitions between them; they are all
unknown. Moreover, since they depend on the key, they are
already associated with it, so the key variables employed by
the attack, already include the unknown state information.

The final step to complete state locking is to protect state
values in conditional statements (i.e., if , case, conditional
operator). To do so, the same process as for the assignment
statements is followed but with a different key (cond key).
This is essential security-wise, since if we use the same key,
then the same state-value set (i.e., assg vals) as for the assign-
ment statements should be used for the conditional ones. But
in this way, state transitions (described in HDL assignments)
would be associated with state decoding (HDL conditionals)
and, through structural analysis, the STG of a circuit’s FSM
could be revealed. Mind that if such a thing happens, the
attacker could replace the unknown state encoding with their
own and get correct FSM operation.

Therefore, we randomly select a new cond key and calculate
the states’ cond val set (Fig. 1(d)), exactly as we did with
assg key and assg vals. Then, in all conditional statements
of an FSM’s RTL description, we replace all the occurrences
of the state variable with its XOR operation with cond key,
and we check against the necessary value from the cond val
set. For example, the if statements are modified from:

if(state == check state)...
to: if((state∧cond key) == cond valcheck state)...
The case statements and the conditional-operator expressions
are modified in a similar manner. In the example of Fig. 1,
observe that for none of the FSM states, the corresponding
assg val and cond val are equal. As explained, this decouples
state transitions from state decoding, effectively removing node
labels and edges from an FSM’s STG. Although transitions to
the same state can be identified, the attacker cannot associate
the origin with the destination states, due to the different
assg val and cond val sets. This is necessary for revealing
the FSM though, as, otherwise, edges cannot be placed in
its STG. Thus, the only things that the attacker can learn
from the protected FSM, by structural analysis, are the number
of states and the number of transitions to every state. If for
two values of assg key and cond key, it turns out that, for
state i, assg vali = cond vali, this can be easily solved by
regenerating one of the keys. We also note that for realistic key
and state sizes, sets assg val and cond val will be disjoint.

In Fig. 2, the functional concept of the proposed FSM pro-
tection is shown. When assg key and cond key are correct,
the FSM operates as designed. Otherwise, the state register gets
unexpected values and none of the actual FSM states is reached.



Fig. 2. Functional concept of the FSM protection scheme.

B. Output Corruption
Output Corruption (OC) is what distinguishes circuit opera-

tion with a correct key from that with a wrong key. As has been
shown in [7], low OC can allow the approximate utilization of a
circuit, even without full-key knowledge. Most sequential logic-
locking techniques rely on combinational locking for OC, i.e.,
on the insertion of key-gates or other combinational locking
components. However, this has two disadvantages: a) apart from
the RTL code, it requires intervention in the circuit’s netlist,
which makes locking more complex. b) Since random compo-
nent insertion is necessary to reduce locking traces that can be
used by attacks [1], the resulting OC may not be sufficiently
high; random placement provides no guarantee as to how much
a component’s insertion location affects a circuit’s outputs.

To address these issues, we propose an RTL-applicable OC
approach, that leverages the functionality of one or very few
states of the actual FSM. The idea is, in the existence of a
wrong key, to ”send” the FSM to one or very few correct-
operation states that significantly affect the circuit’s outputs,
to cause OC. Mind that, in this scenario, transitions between
correct-operation states of the FSM are not desirable. What is
needed is to ”jump” to one of them, exploit its output activity
to cause OC, and then ”jump” back to the incorrect-operation
area. This is shown in Fig. 3, which, additionally to Fig. 2,
includes the described OC transitions to two of the FSM’s
correct-operation states and back.

To implement OC transitions, we make use of the default
clause of case statements. As this clause is used to cover
all state-register values that do not match any of the case
items listed above it, it is suitable for this purpose. The most
important issue that has to be addressed in this approach is that
the actual encoding value(s) of the selected correct-operation
state(s) will be exposed. Although they can be protected against
structural analysis, inevitably, in simulation, they will become
visible. To prevent revealing of the keys, which would be trivial
if the actual encoding of a state, along with its assg val
and cond val were known, we remove the state(s) used for
OC from the locking process and we use directly their actual
encoding value. In this way, we protect all the rest states and
we just reveal a small part of the FSM for OC purposes.

In order not to compromise security, the following rules
should be followed when selecting states for OC: a) the fewest
possible states that yield a sufficient level of OC should be
used; b) the initial state of the FSM should not be selected, so
that the starting point of circuit’s (correct) operation remains
hidden; c) if more than one states are selected, they should be
reached in random order; d) edge-connected correct-operation
states should be avoided, since they will reveal larger chunks
of the FSM’s functionality. It is worth noting that if the last
rule is followed, the transitions from the OC states back to the
incorrect-operation area, are a direct result of the fact that the

Fig. 3. The complete FSMlock scheme with output corruption (OC) capability.

states following the OC one are locked. Therefore, a wrong key
will generate wrong state values for them.

Concerning the common use of the default clause for
protection against the occurrence of unspecified states during
correct operation (i.e., with correct keys), it can still be realized.
Just an additional flag-bit indicating origin from the default
clause is needed. In the OC state, this bit will be checked and
if it is true, a new encrypted transition (using assg key) to the
appropriate state (usually the reset one) will be performed. As
required, with the correct key, the circuit will end up to this
state; otherwise, it will return to the incorrect-operation area.

As a final remark, we note that if more than one states are
selected for OC purposes, they are alternated in a specific,
non-functional order inside the default clause, using a small
counter to keep this order.

III. EXPERIMENTAL RESULTS
FSMlock has been implemented in Python. Yosys was first

used on the benchmark circuits’ RTL descriptions to extract
FSM information. For each circuit, this information, the corre-
sponding RTL description, and some extra input data, including
the correct-operation states to be used for OC, were fed to the
implemented Python utility for applying FSMlock. In circuits
that consist of multiple different modules with a separate FSM
each, we lock only one of the modules (but all of its instances,
with the same two keys), as this was the simplest approach.
Regarding OC states, a number of 2 or 4 were utilized.
Their selection was made experimentally, by performing a few
simulations and observing output activity. In our experiments,
the largest ITC’99 benchmarks were used, except for b19 that
exhibited constant-zero outputs under random inputs.

Concerning oracle-based sequential attacks, all three cate-
gories were considered. The structural+functional one [2], [3] is
not applicable to the proposed defense though. This is because,
to perform functional analysis, knowledge of the locked FSM’s
reset state and enumeration of all FSM input values [3] is
required. However, in FSMlock, the reset state is unknown,
while the circuit’s key inputs are driven to the FSM and their
large number makes enumeration infeasible.

Against FSMlock, we deployed the KC2 [4] and PSO-guided
[7] attacks. To apply KC2, the NEOS open-source tool was
utilized. All experiments were executed on a 6-core/12-thread
AMD Ryzen5 processor running at 3.9 GHz, and a timeout
period of 48 h was set for the attack. After the attack’s termina-
tion, we calculated OC percentages, by simulating every circuit
using the returned key, with 5 ·105 random input vectors. Some
reset activations were also performed throughout the input-
vector sequence. We should mention that the OC calculations
are bit- and not pattern-oriented, i.e., the reported percentages
represent the average number of bit inversions per output pat-
tern, relative to the corresponding correct one (i.e., mean Ham-
ming distance over the total output-pattern count). The results



TABLE I
KC2 AND PSO-GUIDED ATTACKS RESULTS

Circuit

Key size = 64 Key size = 128
Correct OC (%) Correct OC (%)

key bits (%) after attack key bits (%) after attack
KC2 PSO KC2 PSO KC2 PSO KC2 PSO

b14 47.66 45.16 47.6 47.3 48.05 52.19 47.4 47.2
b15 48.44 45.94 21.9 21.6 48.83 48.44 21.6 21.8
b17 43.75 44.53 10.1 10.0 53.13 49.14 9.8 10.0
b18 55.47 52.03 8.7 9.7 49.22 47.11 8.8 9.7
b20 46.88 46.69 35.6 36.0 53.52 50.63 36.9 35.8
b21 60.16 47.50 48.9 49.0 46.48 52.89 49.1 48.8
b22 53.13 49.84 46.2 46.2 46.88 50.39 46.2 46.2

for the KC2 attack are shown in the ”KC2”-labeled columns
of Table I. Note that a reported key size of a certain length,
means that both assg key and cond key are of that length.

We mention that for b14 and the circuits that locking is applied
to a b14 module (b20, b21 and b22), KC2 terminates quickly
(within 1.5 h) but with a wrong key. This can be attributed to
the fact that the attack finds a key that leads to oracle-response
matching over a small number of unrolling steps, but not for
longer time periods [5]. The subsequent equivalence check, us-
ing dsec ABC command, ends successfully, assuming though
the all-zero reset state for the circuits’ registers, which is not
the case for FSMlock. As for the remaining benchmarks (b15,
b17 and b18), the attack timeouts with a wrong key.

As can be seen from Table I, FSMlock practically manages
to nullify KC2. Nearly all correct key-bit percentages are
around 50% (apart from the 64-bit-key case of b21 that gets
to 60.16%), which is equivalent to random-value assignment.
As far as OC is concerned, we observe that it is very close
to the optimal 50% for b14, b21 and b22, it is very high
for b20, acceptable for b15, and somewhat low for b17 and
b18. The reason for the lower OC percentages is that many of
the corresponding circuits’ outputs, maintain a constant value
throughout the entire OC simulation.

Concerning the PSO-guided attack, we have implemented it
in Python, using the very fast Verilator Verilog simulator. As
termination condition, in case of a non-perfect simulation match
between the output for a particle (candidate key-pair) and that
of the oracle, we set an upper limit of 400 particle generations
to evolve. This was based on the observation that the quality
of the attack’s results, i.e., the attained OC level, was usually
saturating well before 400 generations. For the calculation of
the correct key-bit percentages and OC, we followed the same
process as for KC2, with the difference that we repeated each
experiment (attack + OC calculation) five times, as the attack
includes random choices. The percentages reported in Table I
are the average values of the results of these five experiments.

We can see that the PSO-guided attack has exactly the same,
random-like behavior as KC2. This can be attributed to the main
features of FSMlock: with a very large state space and without
knowledge of the FSM’s reset state (i.e., a known correct
state to begin with), a random initial key-value group (particle
generation) is very difficult to evolve to a high-quality particle
generation. Consequently, the OC percentages after the PSO-
guided attack, are similarly high as those obtained after KC2.

Finally, we measured the area and delay overheads that
FSMlock imposes to the protected circuits. To do so, inside
Yosys, we invoked ABC for performing synthesis, utilizing the
public FreePDK 45 nm library. For delay measurements we
set an upper delay limit of 10000 ps (100 MHz min clock

TABLE II
AREA AND DELAY OVERHEAD RESULTS

Key size = 64 Key size = 128
Circuit Area Delay Area Delay

ovhd (%) ovhd (%) ovhd (%) ovhd (%)
b14 24.9 -3.94 38.82 -7.72
b15 9.47 0.95 21.21 -0.09
b17 9.51 -0.02 22.79 -0.02
b18 8.09 0 16.35 0
b20 10.58 0 14.8 0
b21 10.73 0 14.83 0
b22 3.79 0 6.18 0

frequency). The derived results are shown in Table II. In terms
of area overhead, there is a clear trend of decreasing overhead
as circuit size increases. Any discrepancies on this, are due to
the existence of multiple locked instances of the same module
in circuits b17-b22. However, by taking into account that these
benchmarks are of small / medium size, we can deduce that
for larger, real-life circuits, area overhead will be very small.
Concerning delay, as expected, there are negligible differences
between the original and the locked circuits, as the critical path
of a circuit does not lie in the control logic (FSM).

IV. CONCLUSIONS
We presented FSMlock, a sequential logic-locking approach

against oracle-based attacks that hides the entire FSM of a
circuit, by locking its states and transitions using two constant
keys. Therefore, neither the reset state of the circuit is available
for the attacker to start from, nor parts of the correct FSM
operation remain open for them to exploit. FSMlock employs
a new RTL-applicable OC approach, which makes use of one
or very few correct-operation states that significantly affect the
circuit’s outputs. By moving to these states from the incorrect-
operation FSM area and then back, we get high OC results.
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