
1 

 

Distributed edge computing paradigm 

with dedicated devices for energy 

efficiency and predictive maintenance 

applications  

Month 05, 2018 

Sarantis Kotsilitis1,2,3, Effie Marcoulaki1, Emmanouil Kalligeros2, Yorgos Mousmoulas3  

 

1 System Reliability and Industrial Safety Laboratory, National Centre for Scientific Research 

“Demokritos”, Athens, Greece; 2 Department of Information and Communication Systems 

Engineering, University of the Aegean, Samos, Greece; 3 Plegma Labs, Athens, Greece 

 
ABSTRACT  

This paper presents a new project to deliver an advanced and innovative solution for energy 

disaggregation intended for industrial applications, commercial buildings and households. The 

PREDIVIS project aims to address the problem of predictive maintenance by providing a cost-

efficient solution compared to traditional solutions with multiple sensor systems. This solution 

involves the measurement and analysis of aggregated signals, and the application of suitable 

disaggregation technologies to retrieve individual device signals. The paper discusses the 

proposed architecture plan involving intelligent edge devices, hardware accelerated algorithms 

and cloud computing services using advanced data processing analytics. 

Keywords: Edge Computing, Internet of Things, Predictive maintenance, Energy efficiency, Energy 

disaggregation, Device health monitoring. 
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INTRODUCTION 

During the last decade most ICT enterprises and organizations were focused on migrating to 

cloud solutions and architectures. Cloud solutions are still dominating the field of ICT to provide 

adequate storage, computational power and centralization features. Cloud computing 

technologies have been used on a plethora of cases, which has led huge corporations (e.g. IBM, 

Microsoft etc.) to migrate or implement their own solutions. In most cases, the cost for the 

infrastructure rises exponentially when new features or additional data are integrated into 

systems, leading to hybrid solutions that use cloud infrastructures solely for data storage and 

centralization, and private ones for data processing and intense computational applications.  

Monitoring of energy consumption is crucial for companies, organizations, industries and 

individuals towards energy efficiency. Project PREDIVIS, herein presented, aims to deliver a novel 

solution for energy disaggregation, energy efficiency and predictive maintenance based on major 

ICT technologies such as IoT, Edge computing, Microelectronics, Digital Circuits, and Deep 

Learning. Energy disaggregation, also referred as Non-Intrusive Load Monitoring (NILM), is the 

processing of an aggregated electric load signal metered at a single point. By analyzing the 

transitions of load at that point (line), we can identify the devices used at a certain time.  

The PREDIVIS project is a collaboration between three partners: an IoT company (Plegma Labs 

S.A.), a research institution (NCSR “Demokritos”) and a university (University of the Aegean, Dept. 

of Information and Communication Syst. Engineering). The goal of this project is to deliver an 

advanced and innovative solution for energy disaggregation intended for industrial applications, 

commercial buildings and households. The project will create a smart energy analyzer sampling 

device working at a high frequency sampling rate (64KHz) to preprocess the majority of the data 

on site. The following sections present the proposed architecture plan, its benefits and how the 

project aims to address the problem of predictive maintenance by providing a cost-efficient 

solution, compared to multiple sensor systems.  

 

STATE OF THE ART  

IoT devices are producing, on a daily basis, vast amounts of data that are transferred to central 

nodes/ units for storage and processing. According to CISCO’s forecast [1], the traffic will reach 
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3.3 ZB/year by 2021. Due to the huge amount of data produced, IoT technology is often 

accompanied by Big Data [2] techniques to handle the data storage and processing. The most 

common practice for sensor data acquisition systems is to harvest the data and transmit them 

in raw format to some central infrastructure, demanding, most of the times, huge upload speeds 

to deliver near real-time feedback to users.  

Since Hart [3] first introduced the concept of NILM in the 90’s (1992), numerous techniques have 

been developed to address the problem [4, 5, 6]. The main concept of data analysis has been to 

utilize smart devices such as energy meters, at various sampling rates, from 1 measurement of 

total power every 15 minutes up to a couple of MHz of electric waveforms’ samples. Most of the 

times, the collected data are transferred to a cloud infrastructure in order to be processed. To 

minimize the amount of data transferred, various compression techniques [7, 8, 9] and system 

architectures have been used. The type of applied data analysis varies with the sampling rate, due 

to the different amount of information that can be extracted from data of higher resolution.  

Most systems designed for energy disaggregation [10, 11] and industrial monitoring [12, 13] 

consist of a sensor network sampling various kind of data, and a gateway system that collects 

the data and either stores them locally or sends them to a cloud infrastructure. The collected data 

are processed to extract features and knowledge. The majority of previous applications 

transferred the entire volume of data to the cloud, where the data were stored and analyzed in 

real time. This procedure required a lot of resources for data transmission, remote storage, 

analysis and processing, and led to delays of up to a couple of days.  

Since 2013, major companies in ICT and Industry 4.0 have realized the limitations of cloud 

infrastructures and moved towards distributed architectures referred as edge computing or fog 

computing, powered by the advances in telecommunications (4G, LTE, 5G) and broadband 

connection speed. Edge and fog systems differ by the way their architecture assigns the system’s 

computing power: edge systems assign power to data gathering devices, whereas fog computing 

systems assign the power to a local area network, where the data are processed within a hub, 

node or a gateway [14,22]. Distributed architectures maintain the main features of cloud 

computing, but they offload the overall system in terms of storage, bandwidth and computational 

needs. They are also more tolerant to internet service failures [17], more secure, and can shift 

control and intelligence away from central nodes to the devices or even the sensors. 
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By offloading the system, a company/organization can lower the infrastructure costs because 

less data will be transmitted remotely. By processing data on site, the system can share 

information between sensors or deployed devices within seconds or even milliseconds. The 

recent increase in power of microcontrollers, gateways and even low-power processors makes 

these types of architectures capable of delivering high quality of services by processing large 

amounts of data. 

 

Figure 1 Cloud, fog and edge architectures pyramid, in terms of number of devices and type of connectivities 

 Approaches on industrial monitoring for preventive and predictive maintenance [10, 11] with 

NILM methods have been developed with promising results on the field. Such approaches feature 

high frequency sampling, computing power level characteristics like active and reactive power, 

power factor, harmonics voltage imbalances etc. Furthermore, NILM systems can deliver 

adequate power quality parameters to analyze electric powered machinery. By monitoring 

simultaneously multiple machinery of the same group or with adequate related components, it is 

easier to observe anomalies and faults. Aside from that, power analysis on the production chain 

can give insights and support actions of load balancing, energy efficiency and job scheduling.  

SYSTEM ARCHITECTURE 

This work will combine existing advanced ICT technologies to deliver a new ecosystem based on 

edge computing appliance detection, using a custom Field Programmable Gate Array (FPGA)-

based design to accelerate neural networks and a centralized unit for intense analysis towards 

predictive maintenance and energy efficiency.  

This section analyses the architecture of PREDIVIS as an edge-cloud hybrid computing system, 

as well as specific technologies used for data collection, storage, analysis and processing. 
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The proposed system’s architecture consists of several components working together to 

deliver a set of services. It comprises high performance data sampling and processing 

devices referred to as agents, a central node to deliver the service to users and a software suite. 

The agents of the system are compact, low-energy devices that act as data collectors and data 

processors, while they also communicate with the central node. An Analog-to-Digital (ADC) 

conversion component is used as a multichannel sensor to sample the voltage and current 

waveforms. A System-on-Chip (SoC) FPGA collects the data and implements advanced Neural 

Network (NN) structure and algorithms for data processing and energy disaggregation. This 

device integrates both processing cores and programmable logic in the same piece of silicon, 

and is responsible for backing up data for a certain amount of time and transmitting results to 

the central node. The flexibility to reprogram the FPGA with different NNs and increase the 

systems accuracy allows Continuous Delivery and Integration of more accurate models for each 

deployment site, compared to the case of using dedicated Application Specific Integrated Circuits 

(ASICs). FPGAs offer some important advantages compared to ASICs. A high-level comparison 

is provided in Table 1. 

 

Property FPGA ASIC 

Time to market  Fast Slow 
Reconfigurable  Yes No 
Application type  General Specific 
Unit cost  High Low 
Performance Medium High 
Connection with multiple of-the-self electronics  Yes No 

Table 1 High level comparison between FPGA and ASIC devices  

The central node is responsible for storing the data transmitted by the agents and for delivering 

a visualization platform to the users. Additionally, it is used to fine-tune the NN models on the 

agents by receiving feedback from the users and data from other agents. Moreover, the central 

node analyzes further the received data to deliver advanced insight and is responsible for helping 

an agent distinguish different appliances with similar behavior and electrical characteristics. On 

the central node, the Business Intelligence of energy efficiency analyzes data to provide 

personalized suggestions to users, in order to lower their carbon footprint. Finally, in cases where 

the NNs on the network edge fail to provide results, raw data are transferred to the central node 

to be analyzed and compared with other agents’ data to retrain the model. 
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Property EDGE Cloud 

Internet connection  Optional Mandatory 
Bandwidth  Low High 
Storage  Small Large 
Security  High Medium 
Architecture  Decentralized Centralized 

Table 2 Comparison of EDGE and Cloud systems  

The above architecture has many advantages compared to widely used cloud systems (Table 2), 

even though there are certain limitations on what we can achieve, mainly in terms of the local 

system availability. As the number of deployed devices increases, so do the points of failure, 

calling for advanced techniques to monitor and mitigate failures. The agent also requires power 

outage measures in order to provide the service without interruptions that might affect the 

devices on the deployment site, their health and the quality of service. Beyond the availability 

drawbacks, edge devices are capable of processing finite volumes of data, so different 

hardware/software combinations for different locations and deployment sites may be required. 

Another component of our system is the library of disaggregation and predictive maintenance 

algorithms, where multiple cases can run in parallel to search for superior alternatives, when the 

accuracy of a node is below a certain threshold or if the user specifies it. This module is 

responsible for keeping metrics for the devices and monitor their health. Such metrics can be the 

working hours of a device, power shortages / anomalies, etc. A simpler, less sophisticated 

approach of the predictive maintenance algorithms will reside on the edge devices. This 

architecture will reduce the amount of data transferred to the central node from some GBs per 

day to a few keypair timestamp-labeled values, minimizing the volume of data, as illustrated in 

the next section. 
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Figure 2 Predictive maintenance application architecture 

 

Most of the times, industrial production systems are using advanced and complicated sensor 

systems to harvest data from machinery like conveyor belts and motor drive equipment [18,19] 

described in Figure 2. Data collected from sensors will further on be analyzed using tailored 

models to produce knowledge on the equipment health. Most common practices for motor drive 

equipment are vibration sensors on multiple points, temperature and soundwave monitoring 

devices. Approaches on industrial health monitoring through current analysis have been made 

using Motor Current Signature Analysis [20] (MCSA), Instantaneous Power Signature Analysis [21] 

(IPSA), power quality etc., to predict machine fault. Theses sensors need to be installed on every 

device to harvest data. NILM technology can provide a Non-Intrusive method to harvest this kind 

of data on newer and older machinery devices, giving the advantage of retrofitting to older 

machinery and outdated systems decreasing the overall cost of installation and monitoring. 

 

DATA LOAD ESTIMATION 

Preliminary analysis of the system’s tradeoff has shown that the expected reduction of 

transmitted data, using the proposed edge computing architecture, is reduced by at least six 

orders of magnitude. The amount of raw data to be transferred is in the magnitude of several GBs 

per day.  

The current load, L, of transmitted data per time unit can be calculated as follows: 
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𝐿 = 𝐹 ∗ (𝑁𝑝 ∗ 𝑁𝑤 ∗ 𝑅) 

where Np is the number of alternative current phases sampled, Nw is the number of 

waveforms sampled for each phase, F is the sampling frequency used, and R is the resolution in 

bits for each channel. Assuming a typical 3-phase household installation, and setting the 

sampling frequency at 64 kHz and the resolution at 16 bits per channel to sample both current 

and voltage waveforms of each phase, the data load becomes:  

𝐿 =
64000

𝑠
∗ (3 ∗ 2 ∗ 16 𝑏𝑖𝑡𝑠 ) = 768

𝐾𝑏𝑦𝑡𝑒𝑠

𝑠
 

Most household internet connections have a fixed limit of 1 Mbit/s upload and larger upload 

speed connections often increase exponentially the internet connection cost. This means that 

every second the connection can transmit 125 Kbytes, which is insufficient to stream the raw data 

load to the cloud. By shifting the processing of data to the edge, the data that will finally be 

transferred are significantly limited. These data comprise the device on/off events, the transitions 

in device working states (e.g., a washing machine transition from washing to rinsing). Consider a 

typical household with a number of active devices ranging from 7 to 20, and a time window, T, 

equal to one hour. During T, each active device will produce zero (if activated before the beginning 

of T and stayed at the same state the whole time) to five (for a washing machine) events. The 

additional data include the working time of each device, the active and reactive power, voltage 

imbalances etc. In total, for each device, the metadata volume to be transmitted to the cloud 

during T is normally up to 120 Kbytes per hour. It is therefore shown that, data preprocessing on 

site can reduce the amount of data to be transferred by at least 6 orders of magnitude, leading to 

a few Kbytes per day. 

 

CONCLUSION 

This paper discussed the architecture of PREDIVIS project. The paper presented both software 

and hardware component architectures that can address the problem of data transfer and 

storage by processing data on the Edge. NILM technology can be a cost efficient Non-Intrusive 

method for predictive and preventive maintenance and machinery health monitoring for industrial, 

commercial and household environments.  
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Future work will concentrate on finalizing the design of the architecture on both software and 

hardware components, deciding which data should be collected, and installing agents in 

different sites to collect data. The major challenge will be then to develop appropriate data 

processing algorithms in order to complete the ecosystem for energy disaggregation and 

predictive maintenance.  

This work will collect a vast amount of high-frequency data (64KHz) over the next years to create 

a data warehouse of multiple and heterogeneous instances of households, commercial and 

industrial sites. The data will include manufacturer specifications, historical data (time to failure 

and repair/maintenance), and data collected during system operation. The latter will consist of 

time series of carefully selected performance indicators depending on the device. The collected 

data will be published online to be used by interested parties. 
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