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ABSTRACT

This paper presents a new project to deliver an advanced and innovative solution for energy
disaggregation intended for industrial applications, commercial buildings and households. The
PREDIVIS project aims to address the problem of predictive maintenance by providing a cost-
efficient solution compared to traditional solutions with multiple sensor systems. This solution
involves the measurement and analysis of aggregated signals, and the application of suitable
disaggregation technologies to retrieve individual device signals. The paper discusses the
proposed architecture plan involving intelligent edge devices, hardware accelerated algorithms
and cloud computing services using advanced data processing analytics.
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INTRODUCTION

During the last decade most ICT enterprises and organizations were focused on migrating to

cloud solutions and architectures. Cloud solutions are still dominating the field of ICT to provide
adequate storage, computational power and centralization features. Cloud computing
technologies have been used on a plethora of cases, which has led huge corporations (e.g. IBM,
Microsoft etc.) to migrate or implement their own solutions. In most cases, the cost for the
infrastructure rises exponentially when new features or additional data are integrated into
systems, leading to hybrid solutions that use cloud infrastructures solely for data storage and

centralization, and private ones for data processing and intense computational applications.

Monitoring of energy consumption is crucial for companies, organizations, industries and
individuals towards energy efficiency. Project PREDIVIS, herein presented, aims to deliver a novel
solution for energy disaggregation, energy efficiency and predictive maintenance based on major
ICT technologies such as IoT, Edge computing, Microelectronics, Digital Circuits, and Deep
Learning. Energy disaggregation, also referred as Non-Intrusive Load Monitoring (NILM), is the
processing of an aggregated electric load signal metered at a single point. By analyzing the
transitions of load at that point (line), we can identify the devices used at a certain time.

The PREDIVIS project is a collaboration between three partners: an loT company (Plegma Labs
S.A.), aresearch institution (NCSR “Demokritos”) and a university (University of the Aegean, Dept.
of Information and Communication Syst. Engineering). The goal of this project is to deliver an
advanced and innovative solution for energy disaggregation intended for industrial applications,
commercial buildings and households. The project will create a smart energy analyzer sampling
device working at a high frequency sampling rate (64KHz) to preprocess the majority of the data
on site. The following sections present the proposed architecture plan, its benefits and how the
project aims to address the problem of predictive maintenance by providing a cost-efficient

solution, compared to multiple sensor systems.

STATE OF THE ART

loT devices are producing, on a daily basis, vast amounts of data that are transferred to central

nodes/ units for storage and processing. According to CISCO'’s forecast [1], the traffic will reach




3.3 ZB/year by 2021. Due to the huge amount of data produced, IoT technology is often
accompanied by Big Data [2] techniques to handle the data storage and processing. The most
common practice for sensor data acquisition systems is to harvest the data and transmit them
in raw format to some central infrastructure, demanding, most of the times, huge upload speeds
to deliver near real-time feedback to users.

Since Hart [3] first introduced the concept of NILM in the 90’s (1992), numerous techniques have
been developed to address the problem [4, 5, 6]. The main concept of data analysis has been to
utilize smart devices such as energy meters, at various sampling rates, from 1 measurement of
total power every 15 minutes up to a couple of MHz of electric waveforms’ samples. Most of the
times, the collected data are transferred to a cloud infrastructure in order to be processed. To
minimize the amount of data transferred, various compression techniques [7, 8, 9] and system
architectures have been used. The type of applied data analysis varies with the sampling rate, due
to the different amount of information that can be extracted from data of higher resolution.

Most systems designed for energy disaggregation [10, 11] and industrial monitoring [12, 13]
consist of a sensor network sampling various kind of data, and a gateway system that collects
the data and either stores them locally or sends them to a cloud infrastructure. The collected data
are processed to extract features and knowledge. The majority of previous applications
transferred the entire volume of data to the cloud, where the data were stored and analyzed in
real time. This procedure required a lot of resources for data transmission, remote storage,
analysis and processing, and led to delays of up to a couple of days.

Since 2013, major companies in ICT and Industry 4.0 have realized the limitations of cloud
infrastructures and moved towards distributed architectures referred as edge computing or fog
computing, powered by the advances in telecommunications (4G, LTE, 5G) and broadband
connection speed. Edge and fog systems differ by the way their architecture assigns the system’s
computing power: edge systems assign power to data gathering devices, whereas fog computing
systems assign the power to a local area network, where the data are processed within a hub,
node or a gateway [14,22]. Distributed architectures maintain the main features of cloud
computing, but they offload the overall system in terms of storage, bandwidth and computational
needs. They are also more tolerant to internet service failures [17], more secure, and can shift

control and intelligence away from central nodes to the devices or even the sensors.




By offloading the system, a company/organization can lower the infrastructure costs because
less data will be transmitted remotely. By processing data on site, the system can share
information between sensors or deployed devices within seconds or even milliseconds. The
recent increase in power of microcontrollers, gateways and even low-power processors makes
these types of architectures capable of delivering high quality of services by processing large

amounts of data.

2
%
%%,
2
2 ¢
nodes, gateways datahubs /)oo%/
etc. b %
% %o
Edge
sensor devices equipeted with

microcontrollers, processors etc.

Figure 1 Cloud, fog and edge architectures pyramid, in terms of number of devices and type of connectivities

Approaches on industrial monitoring for preventive and predictive maintenance [10, 11] with
NILM methods have been developed with promising results on the field. Such approaches feature
high frequency sampling, computing power level characteristics like active and reactive power,
power factor, harmonics voltage imbalances etc. Furthermore, NILM systems can deliver
adequate power quality parameters to analyze electric powered machinery. By monitoring
simultaneously multiple machinery of the same group or with adequate related components, it is
easier to observe anomalies and faults. Aside from that, power analysis on the production chain
can give insights and support actions of load balancing, energy efficiency and job scheduling.

SYSTEM ARCHITECTURE

This work will combine existing advanced ICT technologies to deliver a new ecosystem based on
edge computing appliance detection, using a custom Field Programmable Gate Array (FPGA)-
based design to accelerate neural networks and a centralized unit for intense analysis towards
predictive maintenance and energy efficiency.

This section analyses the architecture of PREDIVIS as an edge-cloud hybrid computing system,

as well as specific technologies used for data collection, storage, analysis and processing.




The proposed system’s architecture consists of several components working together to
deliver a set of services. It comprises high performance data sampling and processing
devices referred to as agents, a central node to deliver the service to users and a software suite.
The agents of the system are compact, low-energy devices that act as data collectors and data
processors, while they also communicate with the central node. An Analog-to-Digital (ADC)
conversion component is used as a multichannel sensor to sample the voltage and current
waveforms. A System-on-Chip (SoC) FPGA collects the data and implements advanced Neural
Network (NN) structure and algorithms for data processing and energy disaggregation. This
device integrates both processing cores and programmable logic in the same piece of silicon,
and is responsible for backing up data for a certain amount of time and transmitting results to
the central node. The flexibility to reprogram the FPGA with different NNs and increase the
systems accuracy allows Continuous Delivery and Integration of more accurate models for each
deployment site, compared to the case of using dedicated Application Specific Integrated Circuits
(ASICs). FPGAs offer some important advantages compared to ASICs. A high-level comparison
is provided in Table 1.

Property FPGA ASIC
Time to market Fast Slow
Reconfigurable Yes No
Application type General Specific
Unit cost High Low
Performance Medium High
Connection with multiple of-the-self electronics Yes No

Table 1 High level comparison between FPGA and ASIC devices

The central node is responsible for storing the data transmitted by the agents and for delivering
a visualization platform to the users. Additionally, it is used to fine-tune the NN models on the
agents by receiving feedback from the users and data from other agents. Moreover, the central
node analyzes further the received data to deliver advanced insight and is responsible for helping
an agent distinguish different appliances with similar behavior and electrical characteristics. On
the central node, the Business Intelligence of energy efficiency analyzes data to provide
personalized suggestions to users, in order to lower their carbon footprint. Finally, in cases where
the NNs on the network edge fail to provide results, raw data are transferred to the central node

to be analyzed and compared with other agents’ data to retrain the model.




Property EDGE Cloud
Internet connection Optional Mandatory
Bandwidth Low High
Storage Small Large
Security High Medium
Architecture Decentralized Centralized

Table 2 Comparison of EDGE and Cloud systems

The above architecture has many advantages compared to widely used cloud systems (Table 2),
even though there are certain limitations on what we can achieve, mainly in terms of the local
system availability. As the number of deployed devices increases, so do the points of failure,
calling for advanced techniques to monitor and mitigate failures. The agent also requires power
outage measures in order to provide the service without interruptions that might affect the
devices on the deployment site, their health and the quality of service. Beyond the availability
drawbacks, edge devices are capable of processing finite volumes of data, so different
hardware/software combinations for different locations and deployment sites may be required.

Another component of our system is the library of disaggregation and predictive maintenance
algorithms, where multiple cases can run in parallel to search for superior alternatives, when the
accuracy of a node is below a certain threshold or if the user specifies it. This module is
responsible for keeping metrics for the devices and monitor their health. Such metrics can be the
working hours of a device, power shortages / anomalies, etc. A simpler, less sophisticated
approach of the predictive maintenance algorithms will reside on the edge devices. This
architecture will reduce the amount of data transferred to the central node from some GBs per
day to a few keypair timestamp-labeled values, minimizing the volume of data, as illustrated in

the next section.
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Figure 2 Predictive maintenance application architecture

Most of the times, industrial production systems are using advanced and complicated sensor
systems to harvest data from machinery like conveyor belts and motor drive equipment [18,19]
described in Figure 2. Data collected from sensors will further on be analyzed using tailored
models to produce knowledge on the equipment health. Most common practices for motor drive
equipment are vibration sensors on multiple points, temperature and soundwave monitoring
devices. Approaches on industrial health monitoring through current analysis have been made
using Motor Current Signature Analysis [20] (MCSA), Instantaneous Power Signature Analysis [21]
(IPSA), power quality etc., to predict machine fault. Theses sensors need to be installed on every
device to harvest data. NILM technology can provide a Non-Intrusive method to harvest this kind
of data on newer and older machinery devices, giving the advantage of retrofitting to older
machinery and outdated systems decreasing the overall cost of installation and monitoring.

DATA LOAD ESTIMATION

Preliminary analysis of the system’s tradeoff has shown that the expected reduction of
transmitted data, using the proposed edge computing architecture, is reduced by at least six
orders of magnitude. The amount of raw data to be transferred is in the magnitude of several GBs

per day.

The current load, L, of transmitted data per time unit can be calculated as follows:




L=Fx(Np*Nw=xR)

where Np is the number of alternative current phases sampled, Nw is the number of
waveforms sampled for each phase, F is the sampling frequency used, and R is the resolution in
bits for each channel. Assuming a typical 3-phase household installation, and setting the
sampling frequency at 64 kHz and the resolution at 16 bits per channel to sample both current
and voltage waveforms of each phase, the data load becomes:

64000 ] Kbytes
L= * (3 %216 bits) = 768

Most household internet connections have a fixed limit of 1 Mbit/s upload and larger upload
speed connections often increase exponentially the internet connection cost. This means that
every second the connection can transmit 125 Kbytes, which is insufficient to stream the raw data
load to the cloud. By shifting the processing of data to the edge, the data that will finally be
transferred are significantly limited. These data comprise the device on/off events, the transitions
in device working states (e.g., a washing machine transition from washing to rinsing). Consider a
typical household with a number of active devices ranging from 7 to 20, and a time window, T,
equal to one hour. During T, each active device will produce zero (if activated before the beginning
of T and stayed at the same state the whole time) to five (for a washing machine) events. The
additional data include the working time of each device, the active and reactive power, voltage
imbalances etc. In total, for each device, the metadata volume to be transmitted to the cloud
during T is normally up to 120 Kbytes per hour. It is therefore shown that, data preprocessing on
site can reduce the amount of data to be transferred by at least 6 orders of magnitude, leading to
a few Kbytes per day.

CONCLUSION

This paper discussed the architecture of PREDIVIS project. The paper presented both software
and hardware component architectures that can address the problem of data transfer and
storage by processing data on the Edge. NILM technology can be a cost efficient Non-Intrusive
method for predictive and preventive maintenance and machinery health monitoring for industrial,

commercial and household environments.




Future work will concentrate on finalizing the design of the architecture on both software and
hardware components, deciding which data should be collected, and installing agents in
different sites to collect data. The major challenge will be then to develop appropriate data
processing algorithms in order to complete the ecosystem for energy disaggregation and
predictive maintenance.

This work will collect a vast amount of high-frequency data (64KHz) over the next years to create
a data warehouse of multiple and heterogeneous instances of households, commercial and
industrial sites. The data will include manufacturer specifications, historical data (time to failure
and repair/maintenance), and data collected during system operation. The latter will consist of
time series of carefully selected performance indicators depending on the device. The collected
data will be published online to be used by interested parties.
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