
Microprocessors Lab

Dr Asimakis Leros

Lab exercise 2

Objective

� Implementation of loops in assembly

� Arrays and pointers

� Parallel port programming (digital input–output)

Notes

� We will be using the Arduino board. You will have to implement a

simple circuit.

� Your lab report must include:

— short answers (e.g. two lines) to numbered questions,

— your code, results and comments in numbered programming
assignments.

1 Implementation of loops

Loops are implemented using branch and jump instructions, as are all

program flow operations. There are two main ways to construct a loop. The

first corresponds to for and while loops, where control of the terminating

condition is performed at the beginning of the loop body. As an example,

let us see how the following loop is implemented in assembly:

for(i = 0; i < 4; i++, n = n/2)

1



The loop shifts right the variable n four times; each shift is equivalent

to division by two. We are using register r16 as the loop counter i and r17

as the variable n.

ldi r17, 0x80 ; initialization
ldi r16, 0 ; i = 0

next:
cpi r16, 4 ; if i >= 4...
bcc exit ; ...exit loop
lsr r17 ; r17 = r17 / 2
inc r16 ; i++
rjmp next ; goto next

exit:

Check the operation of the LSR instruction in the AVR assembly man-

ual. Also note that it is much more effective to perform four individual LSR
instructions instead of a loop.

Any general purpose register can serve as the loop counter. In practise

we would rather avoid the index registers (r24–r31) and the first sixteen

registers (r0–r15), which do not implement comparison to a constant. This

leaves us with r16–r23.

Assignment 1. In the above code fragment, fill in the necessary decla-

rations (.cseg etc). Run the program step by step and note, after each

comparison (cpi), the value of r16, r17, carry and zero flag. How do you

explain these values?

Question 1. In place of the instruction rjmp, can we use plain jmp? What

difference will it make?

The second implementation of a loop corresponds to a do–while struc-

ture, where the condition for loop termination is tested at the end of the

loop body. In this way, the loop for right shift of r17 will be carried out as

follows:

ldi r17, 0x80 ; initialization
ldi r16, 0 ; i = 0

next:
lsr r17 ; r17 = r17 / 2
inc r16 ; i++

2



cpi r16, 4 ; if i < 4...
brcs next ; ...goto next

The second form, testing at the end of the loop, is slightly simpler and

shorter (by a jmp instruction). On the other hand it is always executed at

least once, which is sometimes undesirable.

Question 2. Instead of the brcs instruction can we use brne? What will

be the difference?

Assignment 2. Run the second program. Is there any difference in the

final values of r16, r17, carry, zero flag?

Assignment 3. Modify either of the two loops, so that the counter now

runs from i = 4 to i = 0. You will have to to make changes to the loop

termination condition.

We may sometimes have the initial and final values of the counter stored

in register variables. Depending on the loop structure, any bit of the status

register can be tested for loop termination.

2 Arrays and pointers

We can access a memory location using any general purpose register and

direct addressing (LDS and STS instructions). In order to access elements

of an array, we need one of the X, Y, Z indices and what is called ‘‘indirect’’

addressing (LD and ST instructions).

The following code adds the 10 first elements of array. We use r16

as loop counter, and r18 as the sum variable. Additionally, r17 is used to

hold the current array element to be added to the sum; this is necessary,

since addition is performed only on registers. Finally, the X index (r27:r26)

is used to access the array elements.

eor r16, r16 ; i = 0
eor r18, r18 ; sum = 0
ldi r27, high(array) ; initialize X
ldi r26, low(array)

next:
ld r17, X+ ; r17 = array[i]
add r18, r17

3



inc r16 ; i++
cpi r16, 10 ; if i < 10...
brcs next ; ...goto next

We initialize the pointer with the array address, which is known. The

convention used is to place the high–order byte in r27 and the low-order

byte in r26 (this is referred to as ‘‘little-endian’’ convention). Note that

the ld instruction, which moves an array element to r17, subsequently

increments the pointer.

Assignment 4. Fill in the necessary declarations (.cseg etc) in the above

code. You have to declare the array in the data segment; however the

assembler does not allow you to initialize it with values. You will have to

do that manually, using the memory window in the Atmel Studio. Run the

program and write down, only during the first and last pass through the

loop, the values of r16, r17, r18, X, and flags after the execution of each

loop instruction. Give your remarks in your lab report.

Question 3. What is the largest number of elements that can be added in

this way (i.e. the maximum size of the array)?

Assignment 5. Suppose that the array elements are unsigned integers. By

summing up these elements in r18, the result may exceed 255, which is

the largest unsigned int that may fit in one byte; this case will be signified

by the carry flag. Modify your program to store the result in a register

pair instead of a single register (16 bits instead of 8). You will need an

additional 5 or 6 lines of code. Run your modified program with an array

of your choice and verify its operation. Note the data used and the result

in your lab report in decimal and hex.

Question 4. Are the two bytes used to store the result in the previous as-

signment enough? Assume a maximum array size as calculated in ques-

tion 3. Explain your point briefly.

3 Port programming (digital input–output)

The ATMega328 microcontroller has 23 pins available for digital input–

output. These are grouped in three ports: port B (pins PB0–PB7), C (PC0–

PC6), and D (PD0–PD7). Each pin can be individually defined to be used as

either input or output, and can be read from or written to, independently

4



from other pins. Of course, more than one pin, or all pins that constitute

a port, can be accessed concurrently using a single instruction. Access

to each port is provided using three 8-bit special registers (per each port).

Port B registers are named DDRB, PORTB, and PINB, and similarly for

ports C and D. The function of each pin is programmed by a corresponding

bit of these three registers. For pin PBn, where n can be 0 to 7, we have:

DDRB The n-th bit of DDRB determins whether the corresponding pin PBn

will be used for input or output. A value of 0 signifies input, while 1

signifies output. DDRB is written by a single STS or OUT instruction,

so that all 8 pins of port B are programmed concurrently. DDRB can

also be read, although there is little use to that.

PORTB This is a buffer that can be written or read. If bit n of DDRB is

1 (output), then, at each clock cycle, the value of the n-th bit of the

PORTB buffer is transferred to the corresponding I/O pin. However,

if DDRBn = 0 (input), the buffer contents are unaffected (i.e. they are

isolated from the corresponding pin). While DDRBn = 0, writing a

logical 1 to PORTBn has the effect of activating the pull–up resistor

for this pin; writing a logical 0 disables the pull-up resistor. A good

practice for unused pins is to define them as inputs with pull-ups

enabled.

PINB This is a read-only double buffer, to which the values of correspond-

ing I/O pins are transferred. PINBn can be read regardless of whether

DDRBn is 0 or 1. Due to double buffering, there is a small delay of

0.5 to 1.5 clock cycles for a change in pin PBn to appear in PINBn.

Writing a logical 1 to the address of PINBn does not affect the buffer

itself, but has the effect of reversing the corresponding bit PORTBn;

this happens regardless of the value of DDRBn.

It must be noted that all pins on the chip have alternate functions

(analog inputs, interrupt signals, serial communication, reset etc). These

pin functions are selected and programmed by other control registers. On

the Arduino board, pins PB6 and PB7 are used for an external crystal,

which provides the 16 Mhz clock signal; pin PC6 is used for the reset signal;

and pins PD0 and PD1 are used for the Rx and Tx serial communication

signals, through which the board can be programmed through the USB

port. This leaves a maximum of 18 pins for digital I/O (20 in case serial

communications is not used), even if no alternate functions are used.

5



A program can access the PINB, DDRB, and PORTB registers in the

following ways:

� Using the IN and OUT instructions; the corresponding addresses of

the above registers in the I/O space are 3, 4, and 5.

� Using the LDS and STS instructions for direct memory addressing.

In this manner the I/O registers are xtreatedd as extra memory loca-

tions. Their corresponding addresses in the memory (SRAM) space

are 23h, 24h, and 25h. The LD and ST instructions for indirect

addressing can also be used.

� If it desired to set or reset a single bit while leaving the rest as are,

instructions SBI and CBI can be used instead of OUT.

� Finally, writing a logical 1 at the n-th bit of the PINB register is a

convenient way to reverce the value of PORTBn.

Example 1 The following code sets pin PB5 as output and writes a logical

1 to the pin. The rest port B pins are defined as output with pull–up

resistance enabled. We use a NOP instruction to view the results in the

simulator; this is not necessary when we download the program to the

Arduino board.

start:
ldi r16, 0b00100000
out DDRB, r16
ldi r16, 0b11111111
out PORTB, r16
nop

rjmp start

Assignment 6. Run the above code in the simulator and watch the I/O

register window. Note down which register is affected by each instruction

and provide an explanation for this. When does the pin PB5 value change?

Also note, using the disassemble option, the machine language form

of the OUT instructions. Look in the 328 manual (registers section) for all

port register addresses in I/O space.

6



PD3
PD4
GND
VCC
GND
VCC
PB6
PB7

P
D
5

P
D
6

P
D
7

P
B
0

P
B
1

P
B
2

P
B
3

P
B
4

PB5
AVCC
ADC6
AREF
GND
AC7
PC0
PC1

P
C
2

P
C
3

P
C
4

P
C
5

P
C
6

P
D
0

P
D
1

P
D
2

U1

L1 L2

R1
220Ω

R2
220Ω

R3
10kΩ

R4
10kΩ

+5V

S1

S2

Figure 1: Example 2 circuitry

Example 2 We want to use pins PB4 and PB5 as outputs to some external

devices. Pins PB0 and PB1 will be used as control inputs; their values will

determine what the output values will be. In this simple example we will

use two LEDs as output devices and two push–button or DIP switches

as inputs. The rest port B pins will not be used; we shall define them

as inputs with enabled pull–up resistors. In this way we avoid a large

unwanted current that would damage the chip in case, for example, we

inadvertently connect a pin to the power source or ground.

The LEDs can be connected either to the power source with pull–up

resistors, or to the ground with pull–down resistors (the latter is shown in

Fig. 1). In the former case the LEDs will be lit when a logical 0 is written

to the corresponding pin. The switches also need pull–up or pull–down

resistors to avoid excessive current. Reasonable values are 200Ω–1kΩ

for the LEDs (using smaller resistance values will make the LEDs shine

brighter, but also prone to burning out) and around 10kΩ for the switches.

start:
ldi r16, 0b00110000 ; PB5 & PB4 outputs

7



out DDRB, r16
ldi r16, 0b11111100 ; LEDs on & enable pullups
out PORTB, r16

Suppose that we would like the LEDs to be off initially and that each

switch control a corresponding LED (on and off). The simplest thing to do

is transfer the value of bit PB0 to PB4, and bit PB1 to PB5. We can manage

this by using a temporary register and shifting its contents four times to

the left, so that the values of bits 0 and 1 move to bits 4 and 5, respectively.

repeat:
in r16, PINB
andi r16, 0b00000011 ; Keep only b0 and b1
lsl r16
lsl r16
lsl r16
lsl r16 ; 000000xy ==> 00xy0000
out PORTB, r16
rjmp repeat

The above program works in this special case because of the particular

mapping of input and output devices to pins of port B. A more general

approach is to check each input pin in turn, and perform an action ac-

cording to the pin value. This is the polling method that we have seen in

the lectures.

repeat:
in r16, PINB
andi r16, 0b00000001 ; Check value of PB0
brne pb0eq1
cbi PORTB, 4 ; If PB0 = 0, set PB4 = 0
rjmp chkpb1

pb0eq1:
sbi PORTB, 4 ; If PB0 = 1, set PB4 = 1

chkpb1:
in r16, PINB
andi r16, 0b00000010 ; Check value of PB1
brne pb1eq1

8



cbi PORTB, 5 ; If PB1 = 0, set PB5 = 0
rjmp repeat

pb1eq1:
sbi PORTB, 5 ; If PB1 = 1, set PB5 = 1
rjmp repeat

Assignment 7. Run the above two programs step-by-step in the simulator

of the Atmel Studio and make certain that you understand their function.

See the operation of sbi, cbi instructions in the AVR Assembly manual.

Assignment 8. Download each program to the Arduino board and verify

its operation. in order to download the assembled (object) code you will

need the avrdude software. At the ‘‘external tools’’ menu of Atmel Studio

fill in the command avrdude (give the full pathname) and the following

parameters (again use full pathname for avrdude.conf):

-C "...\avrdude.conf" -p atmega328p -c arduino -P COM3
-b 115200 -U flash:w:"$(ProjectDir)Debug\$(TargetName).hex":i

Assignment 9. Modify your code to reverse the logic, i.e. have the LEDs

on initially and switch them off using the switch. Verify your program on

the Arduino board.

Assignment 10. Modify your code, so that each push–button or switch

change the state of the corresponding LED from on to off and vice–versa.

That is, having input PB0 = 1 will reverse the output PB4. This will require

some 5–6 lines of extra code. You will need an extra register to store the

current output value. Try your code first in the simulator. Don’t be worried

if the LEDs occasionally do not seem to respond to the push–buttons;

proper operation will require a delay routine for ‘‘debouncing’’.

9


