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“The most interesting applications of machine learning sometimes come from people with very
little technical background. The intersection of tech and art is where our humanity can really
shine.”

François Chollet
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Abstract

School of Engineering
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Master of Science

Sparse Multi-label Classification of Medical Images
Using Deep Convolutional Neural Networks

by Euangelos LINARDOS

The recent advancements in imaging technologies have improved clinician’s ability to
detect, diagnose, and treat diseases. As an example, radiologists routinely interpret
medical images and summarize their findings in the form of radiology reports. The
mapping of visual information present in medical images to the condensed textual
description is a tedious, time-consuming, expensive, and error-prone task. The devel-
opment of methods that can automatically detect the presence and location of medical
concepts in medical images can improve radiologists’ efficiency, reduce the burden of
manual interpretation, and help reduce diagnostic errors.

In this master thesis, we deal with the challenging task of medical image tagging (or
labeling), which aims to identify medical terms (or concepts) in medical images, and
with the ultimate goal of helping physicians to generate medical reports from medical
images. In particular, we propose a variation of convolutional neural networks for
sparse multi-label classification to predict relevant concepts present in images, and
we test it against all recent datasets from the ImageCLEFmed Caption task (i.e., 2017,
2018, 2019, and 2020). The proposed system outperformed all winning teams in terms
of F1 score between system predicted and ground truth concepts. We present our work
with data analysis, experimental results, comparisons between the different hyper-
parameters and network architectures, and last but not least, with a short discussion
on future steps.

Keywords: Machine Learning, Deep Learning, Image Processing, Computer Vision, Medi-
cal Imaging, Convolutional Neural Networks, Multi Labels, Sparse Labels, ImageCLEFmed,
Concept Detection, Keras, TensorFlow.
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ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ

Περίληψη

Πολυτεχνική Σχολή

Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων

Εργαστήριο Τεχνητής Νοημοσύνης

Μεταπτυχιακό Δίπλωμα Ειδίκευσης

Αυτόματη Επισήμανση Ιατρικών Εικόνων Πολλαπλών Ετικετών

με Χρήση Συνελικτικών Νευρωνικών Δικτύων

από τον Ευάγγελο ΛΙΝΑΡΔΟ

Οι πρόσφατες εξελίξεις στις τεχνολογίες απεικόνισης έχουν βελτιώσει την ικανότητα των

ιατρών να εντοπίζουν, διαγιγνώσκουν, και θεραπεύουν ασθένειες. Για παράδειγμα, οι ακτι-
νολόγοι καλούνται καθημερινά να εξετάσουν ιατρικές εικόνες και να συνοψίσουν τα ευρήματά

τους υπό την μορφή ακτινολογικών αναφορών. Η χαρτογράφηση της οπτικής πληροφορίας
που εντοπίζεται στις ιατρικές εικόνες σε συμπυκνωμένες ιατρικές αναφορές είναι μια επίπονη,
χρονοβόρα, δαπανηρή, και επιρρεπής σε λάθη διαδικασία. Η ανάπτυξη μεθόδων που μπορούν
να ανιχνεύσουν αυτόματα την παρουσία και τη θέση διαφόρων ιατρικών εννοιών στις ιατρικές

εικόνες μπορεί να βελτιώσει την αποτελεσματικότητα των ιατρών, να μειώσει το φορτίο της
χειροκίνητης ερμηνείας, και να βοηθήσει στην μείωση των διαγνωστικών λαθών.

Στην παρούσα μεταπτυχιακή εργασία, ασχολούμαστε με το απαιτητικό πρόβλημα της σή-
μανσης ιατρικών εικόνων, η οποία στοχεύει στον εντοπισμό ιατρικών εννοιών σε ιατρικές
εικόνες, και έχει ως απώτερο στόχο την υποστήριξη των ιατρών στην δημιουργία ιατρικών
αναφορών από ιατρικές εικόνες. Πιο συγκεκριμένα, προτείνουμε μια παραλλαγή των συνε-
λικτικών νευρωνικών δικτύων για ταξινόμηση πολλαπλών ετικετών αραιών διανυσμάτων με

στόχο την πρόβλεψη συναφών εννοιών που εντοπίζονται σε εικόνες, και τη δοκιμάζουμε
σε όλα τα πρόσφατα σύνολα δεδομένων του ImageCLEFmed Caption διαγωνισμού (δηλ.,
2017, 2018, 2019, και 2020). Η προτεινόμενη μέθοδος ξεπέρασε τους νικητές όλων των
παλαιότερων διαγωνισμών βάση της F1 μετρικής, μεταξύ των προβλέψεων του συστήμα-
τος και των δεδομένων αλήθειας. Παρουσιάζουμε τη δουλειά μας με ανάλυση δεδομένων,
πειραματικά αποτελέσματα, συγκρίσεις μεταξύ των διαφόρων υπερ-παραμέτρων και αρχιτεκ-
τονικών δικτύων, καθώς τέλος, με μια σύντομη αναφορικά σε μελλοντικές κατευθύνσεις.

Λέξεις-κλειδιά: Μηχανική Μάθηση, Βαθιά Μάθηση, Επεξεργασία Εικόνας, Υπολογιστική
΄Οραση, Ιατρική Απεικόνιση, Συνελικτικά Νευρωνικά Δίκτυα, Πολλαπλές Ετικέτες, Αραιές
Ετικέτες, ImageCLEFmed, Ανίχνευση ΄Εννοιας, Keras, TensorFlow.
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Chapter 1

Introduction

In this thesis, we explore the Concept Detection task, which is part of the ImageCLEFmed
campaign. The task was first introduced in 2017 and has remained under the same for-
mat ever since (Eickhoff et al., 2017; Herrera et al., 2018; Pelka et al., 2019). Note, how-
ever, this is not the case for the datasets as they differ significantly in each edition, nev-
ertheless always a subset of the ROCO dataset (Pelka et al., 2018). The ROCO dataset
contains radiology images originating from the PMCOAS (Roberts, 2001), where each
image is associated with one or more UMLS labels.

From a technical standpoint, this thesis’s topic lies within the field of multi-label im-
age classification. There are two caveats, though: one is that the distribution of labels
is highly skewed, and the other is that the representation vector of labels is extremely
sparse. These two properties make this task a tough one to solve. Our study, which
is heavily inspired by the winning teams’ work in all previous editions (Katsios and
Kavallieratou, 2017; Pinho and Costa, 2018; Kougia, Pavlopoulos, and Androutsopou-
los, 2019), will focus on applying transfer learning through an exhaustive grid search
from a list of pre-trained models and a range of hyper-parameter values.

1.1 Background

Two of the most common image classification tasks are multi-class image classification
and multi-label image classification. Each image belongs to exactly one class in the
former, whereas the latter is a more challenging task where each image may have
multiple labels associated with it. The multi-label image classification is an interesting
yet complex CV task where the goal is to infer whether the image consists of specific
features. The DL model is trained to recognize these features in an image by feeding
them in the form of text labels during the training phase (Chen et al., 2018a; Chen
et al., 2018b; Durand, Mehrasa, and Mori, 2019; Deng et al., 2009; Everingham et al.,
2010; Ge, Yang, and Yu, 2018).

Even though recent breakthroughs in deep CNNs have pushed the boundaries on
multi-label image classification, it remains a difficult task to overcome due to each im-
age having more than a single label of interest. The overlap of multiple labels makes
it essential to model accurate label dependencies for multi-label image classification
(Chen et al., 2018a; Chen et al., 2019; George and Floerkemeier, 2014; Gong et al.,
2014). A common approach to this problem, which was also adopted in this thesis,
is to model the multiple label classification problem into multiple binary classification
problems by considering each label independent of each other.
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1.2 Motivation

Physicians’ daily routine typically involves the examination of a vast amount of med-
ical images toward the diagnosis of potential diseases. This is a time-consuming and
error-prone process; at other times, there may be not enough experienced physicians to
deal with such demanding decision-making. In order to help the diagnostic process,
CV techniques, combined with recent advances in DL, can significantly assist the in-
terpretation of medical images. Automatic methods can significantly reduce medical
errors and benefit the medical departments tremendously by reducing the exams’ cost
and accelerating the diagnoses’ speed (Bates et al., 2001; Lee et al., 2017).

Among the tasks that can be applied to medical images (Litjens et al., 2017) to as-
sist the diagnostic process is medical image classification. As the name reveals, this
task is all about assigning medical labels to an image so that physicians can focus on
the most relevant medical terms (Shin et al., 2016). Despite the task’s importance for
the common good, medical images are not hugely available or accessible yet; hence,
community research is currently limited (Oakden-Rayner, 2019). However, there is a
growing interest in the automatic analysis of medical images nowadays. In this thesis,
we study four popular datasets for medical image classification by implementing our
own solution and comparing the results with the winning team from the correspond-
ing campaign.

To recap, multi-modal approaches have been shown to achieve better results in image
classification (Pelka, Nensa, and Friedrich, 2018). As the interpretation of medical im-
ages’ knowledge is a time-consuming and error-prone process, there is a considerable
need for automatic methods that can approximate this mapping from an image to one
or more labels. The more image characteristics are known, the more structured the
radiology scans are; hence, the more accurate the radiologists are regarding interpreta-
tion.

1.3 Challenges

During the past few years, we have seen some significant steps forward within the im-
age classification field. In 2012, the system that utilized a DL approach outperformed
all other methods in ILSVRC and achieved a top-5 error rate of 15.4% in the single-
label image classification task (Krizhevsky, Sutskever, and Hinton, 2012; Russakovsky
et al., 2015; Schmidhuber, 2015). Four years later, in 2016, the winner of ILSVRC im-
proved this result even further with a top-5 error rate of 2.9%, using a new design
of CNN. The progress of solving multi-label image classification also moved forward,
improving classification precision year after year (Wei et al., 2016; Ren et al., 2015).
Note, however, that all these methods and architectures were designed and tested on
standard image collections, like ImageNet (Russakovsky et al., 2015) or PASCAL VOC
(Everingham et al., 2010), which were specifically created to compare proposed ap-
proaches and solutions in different papers (Wei et al., 2016; Oquab et al., 2014; Gong
et al., 2014; Chatfield et al., 2014) - and that is exactly the problem.

Most of the datasets created by labs for research purposes differ from those owned
by companies in various ways, such as the distribution of the labels, the sparsity of the
representation vector, the number of systematic errors, and more. In other words, real-
world companies are likely to have more unique and unstructured datasets. Therefore,
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it’s crucial to study how the state-of-the-art methods perform on such exotic datasets
and, therefore, create a system that can automatically overcome these limitations.

1.4 Outline

The remainder of this thesis is organized as follows: Chapter 2 presents the main con-
cepts of DL. Chapter 3 introduces the key ideas of CV from the DL perspective. Chap-
ter 4 analyzes the input data through exploratory analysis, demonstrates the evalua-
tion framework and the methodology used, and, last but not least, presents the results
of our experiments. Finally, Chapter 5 summarizes our work and proposes directions
for the next steps.
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Chapter 2

Fundamental Concepts of Deep
Learning

2.1 Brief Introduction to Deep Learning

In the past few years, AI has been a subject of intense media hype. AI comes up in
countless articles, often outside of technology-minded publications. We are promised
a future that sometimes painted in a harsh light and other times as utopian, where
human jobs will be rare, and most economic activity will be handled by robots and
agents. For a future or current practitioner of AI, it’s crucial to be able to distinguish
the signal from the noise so that we can tell breakthroughs from overhyped press
releases. This chapter provides the essential context around DL and the ecosystem
around it.

2.1.1 The Artificial Intelligence Landscape

First off, let’s define what we mean when we talk about AI and how it relates to ML
and DL (see figure 2.1).

FIGURE 2.1: Artificial intelligence, machine learning, deep learning.

AI was born in the 50s when CS pioneers started asking whether computers could be
made to think. A more concrete definition of the field would be the effort to automate
intellectual tasks usually performed by humans. As such, AI can be considered a
general field that encompasses not only ML and DL, but also many more approaches
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that do not involve any learning. For a very long time, many experts believed that
human-level AI could only be possible by a sufficiently large set of explicit rules. This
approach is also known as Symbolic AI and reached its peak popularity during the
expert systems boom of the 80s. Although this approach proved suitable for well-
defined, logical problems, it turned out to be impractical for solving more complex,
fuzzy problems, including but not limited to, image classification.

ML arises from the idea that a computer will automatically learn these rules by looking
at the data rather than programmers crafting the data-processing rules by hand. As
we already discussed, in classical programming, humans input the rules and the data
to be processed according to these rules, and the answers are generated (see figure
2.1). However, in this new programming paradigm, humans input the data as well as
the answers expected from the data, and the rules are generated. The new rules can
then be applied to new data to produce original answers.

So technically, ML is all about searching for useful representations of some input data,
within a predefined space of possibilities, using guidance from a feedback signal.
It’s a simple idea which, however, allows us to solve a remarkably broad range of
intellectual tasks.

FIGURE 2.2: Clasical programming vs. machine learning.

In other words, a ML system is trained rather than explicitly programmed. It does so
by reading many examples relevant to a task and trying to find a statistical structure
that eventually allows the system to come up with rules for automating the particular
problem.

Although ML only started to flourish in the 1990s, it quickly became the most popular
and successful subfield of AI, a trend abetted by the availability of faster hardware and
larger datasets. And unlike statistics, ML tends to deal with large, complex datasets
for which classical statistical analysis would be impractical. As a result, ML, and es-
pecially DL, exhibit comparatively little mathematical theory, and hence, it’s mostly
engineering oriented.

DL is a specific subfield of ML and a new approach to learning representations from
data with an emphasis on learning successive layers of increasingly meaningful repre-
sentations. The deep in DL stands for this idea of consecutive layers of representations.
Modern DL often involves tens or even hundreds of successive layers of representa-
tions, whereas classical ML approaches usually learn one or two layers of representa-
tions at most; hence, they are often called SL.

In most cases, these layered representations are learned via models called NNs, which
are structured by stacking multiple layers on top of each other. Furthermore, although
our understanding of the brain inspires some of the main concepts in DL, DL models



2.1. Brief Introduction to Deep Learning 7

are not models of the brain; it’s just a mathematical framework for learning represen-
tations from data.

Now let’s examine how a network several layers deep (see figure 2.3) transforms an
image of a number in order to recognize what number is shown in the image.

FIGURE 2.3: A deep neural network for digit classification.

As we can see in figure 2.4, a deep NN can be seen as a multistage information distil-
lation operation, where information goes through serial filters and comes out increas-
ingly refined.

FIGURE 2.4: Deep representations learned by a classification model.

So technically, DL is a multistage way to learn data representations. It’s a very simple
idea, which, however, can end up look like magic!

2.1.2 Learning Deep Representations from Data

We already mentioned that learning, in the context of ML, describes an automated
search process for better representations. So, basically, in order to perform ML, we
need three main things:

• Input data: e.g., images such as JPEG or JPG.

• Expected output: e.g., tags such as dog or cat.

• Score function: e.g., measures such as F1 or precision or recall.
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The first two bullets should look familiar by now, so let’s talk briefly about the third
one. A score function is a way to estimate whether an algorithm is doing a good job
or not. This task is necessary in order to determine the distance between the current
output of the algorithm and the expected one. It’s used as a feedback signal to adjust
the way the algorithm works. This adjustment is what we call learning.

Recall that the primary goal of ML models is to transform input data into meaningful
outputs, a process that is learned from exposure to known input and output examples.
Therefore, the central problem in ML and DL is to transform data meaningfully, or in
other words, to learn useful representations. But, what exactly do we mean when we
say representation?

At its core, a representation is a different way to look at the data. For example, a color
image can be encoded in various formats, including but not limited to RGB and HSV.
Therefore, ML models are all about finding appropriate representations for the input
data or putting it differently, transformations that make input data more amenable to
the underlying task. Keep in mind, though, that ML algorithms are not always creative
in finding these transformations; they are solely searching through a predefined set of
operations called hypothesis space.

2.1.3 How Deep Learning Works in Three Figures

It should be evident by now that ML is all about mapping inputs to targets, which
is done by processing many input-to-target examples, as well as that the mapping
is done via a deep sequence of simple layers which are learned by exposure to those
examples.

The instructions of what a layer should do to its input data are embedded in the layer’s
weights (see figure 2.5). Within this context, learning is the process of finding a set of
weights for all layers in the network, such that the network will map inputs to tar-
gets as precisely as possible. The only problem is that a network can contain tens of
millions of parameters. Therefore, finding the right value for all of them is a time-
consuming and computationally-expensive task, as modifying one parameter will af-
fect the behavior of all the others.

FIGURE 2.5: A neural network is parameterized by its weights.

In order to adjust the output of a NN, we must be able to estimate how far the predicted
output is from the expected one. This is the job of the loss function, which takes the
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predictions of the network along with the corresponding targets, and computes their
in-between distance (see figure 2.6).

FIGURE 2.6: A loss function measures the quality of the network.

The underlying idea in DL is to use the distance score as a feedback signal to slightly
control the weights, toward a direction that will minimize the score of the current
example set (see figure 2.7). This is the job of the optimizer, which is based on the
foundation of the backpropagation algorithm.

FIGURE 2.7: A loss score serves as feedback signal to adjust the weights.

At the beginning of the learning process, the weights of the network consist of ran-
dom values. Because of that, the network only performs a series of arbitrary trans-
formations, which in turn lead to a very high loss score. However, while the network
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processes more-and-more examples, the weights are getting adjusted steadily toward
an ever-decreasing loss score. This process is called training loop, which, repeated an
adequate number of times, yields weights that minimize the loss score. As we have
previously mentioned, DL is a simple mechanism that, once scaled, ends up looking
like magic.

2.1.4 From Neural Networks to Deep Learning

DL has attracted a significant level of public attention and industry investment, unlike
no other subfield in the long history of AI. Still, it’s not the first successful form of ML.
In fact, most ML algorithms used in the industry today are not DL algorithms. DL is
not always the right tool for the job. For example, sometimes there is not enough data
to train a model; other times the task is better solved by a different algorithm.

Although modern variants of NNs have completely substituted early efforts, it’s use-
ful to know how DL originated. The core ideas of NNs were studied as early as the
1950s; however, it took decades to get traction. For a long time, the missing part was
an efficient way to train large NNs. The tipping point came in the mid-1980s when
multiple researchers independently discovered the backpropagation algorithm and
started applying it to NNs.

The first successful real-world application of NNs came in the late 1980s when the
earlier ideas of CNNs combined with the backpropagation algorithm and applied to
the problem of handwritten digits classification.

Around 2010, although the scientific community at large almost completely avoided
NNs, several people still working on them started to make significant breakthroughs.

In 2011, researchers started to win academic image classification competitions with
deep NNs, trained by GPUs. But the tipping point came in 2012 as part of the ImageNet
large-scale image classification challenge. This challenge, which was especially tricky
at the time, is made up of 1.4 million high-resolution color images and 1 thousand
unique categories. In 2011, the top-5 accuracy of the winning model, which was solely
based on classical CV approaches, was only 74.3%. Then, in 2012, a team of researchers
achieved a top-5 accuracy of 83.6%. The competition has been dominated by deep
CNNs every year since. By 2015, the winning team reached a top-5 accuracy of 96.4%,
and the challenge was considered completely solved.

Since 2012, deep CNNs have become the go-to approach for all CV tasks. At major CV
conferences in 2015 and 2016, it was nearly impossible to find presentations that did
not involve CNNs in some form. CNNs have completely replaced SVMs and DTs in a
wide range of applications ever since.

The main reason why DL took off so fast was that it offers better performance on a
wide range of problems. Additionally, it solves problems much easier since it com-
pletely automates FE, probably the most critical and demanding step in ML work-
flows.
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2.1.5 The Driving Forces Behind Deep Learning

Both the CNNs and the backpropagation algorithm were already well understood by
the year 1989. Still, it took more than two decades for DL to take off. In general, ML
advances are driven by three major forces:

• Faster hardware.

• Bigger datasets.

• Smarter algorithms.

Unlike Mathematics and Physics, where prominent breakthroughs can be made with
pen and paper, ML is a purely Engineering science. That means, ML is guided by
experiments rather than theory, and hence, algorithmic breakthroughs can only become
possible when bigger datasets and faster hardware are available to try out new ideas.

During the 1990s and 2000s, commercial CPUs became three to four orders of magni-
tude faster. As a result, it’s now possible to run small DL models on a laptop, some-
thing that would have been impossible 30 years ago.

In reality, though, common DL models require orders of magnitude more computa-
tional power than what a laptop has to offer. Luckily for us, during the 2000s, compa-
nies invested billions of dollars in developing extremely-fast and massively-parallel
devices for the video game industry. These efforts came to benefit the scientific com-
munity too, when, in 2007, NVIDIA launched the CUDA programming interface. As a
result, a small number of GPUs started replacing massive clusters of CPUs in a variety
of high-performance applications.

Meanwhile, large tech companies started training DL models on clusters of hundreds
of GPUs. The raw power of such clusters would never be possible without modern
GPUs.

As far as data, in addition to the exponential growth in storage hardware technology
over the past two decades, the game-changer has been the rise of the Internet, making
it feasible to collect and distribute very big datasets for ML. Today, large tech compa-
nies work with image datasets that could not have been collected without the Internet.
For example, user-generated image labels on Flickr have been a wealth of data for CV
practitioners.

If there is one dataset that has been the driver for the acceleration of DL in CV, this
is, of course, the ImageNet image database, which consists of 1.4 million public images
along with 1 thousand unique categories.

Until the late 2000s, and in addition to the hardware and data challenges, we were
lucking an efficient way to train very deep NNs. Therefore, NNs had to use one or two
layers of representations at most. The main difficulty was that of GP through deep
stacks of layers, and more specifically, the fact that the feedback signal that was used
to train NNs would evaporate as the number of layers increased.

Luckily, the situation changed around 2010 with the arrival of various simple yet ef-
fective algorithmic improvements that allowed for more advanced GP:

• Activation functions.

• Weight-initialization schemes.

• Optimization schemes.



12 Chapter 2. Fundamental Concepts of Deep Learning

Only when these algorithmic improvements began to support training models with
ten or more layers did DL start to shine.

Eventually, around 2014, even more sophisticated methods to help GP were discov-
ered, including but not limited to, BN, RC, and DSC. Nowadays, we can train models
that are thousands of layers deep from scratch in a matter of hours.

2.2 Neural Networks Building Blocks

In order for us to better understand DL, we first need to get familiar with a few simple
yet powerful mathematical concepts, including but not limited to, tensors, tensor opera-
tions, differentiation, and gradient descent. As a result, the goal of this section is to build
a good intuition around them without getting too much into details.

2.2.1 Quick Glance at a Neural Network

The fundamental building block of NNs is the layer, a data processing component that
we can think of as a filter in CV terms; data goes in, and it comes out in a more usable
form. More precisely, we can see the layer as a tool to extract representations from
the input data. Moving forward, DL models primarily consist of chaining together
simple layers that, when considered all together, implement a form of progressive
data distillation.

To make a DL model ready for use, and in addition to layers, we also have to choose
three important components, during compilation step:

• Loss: a function to measure the network performance on the training data so it can
adjust itself in the right direction.

• Optimizer: a mechanism via which the network will update itself based on the
input data and loss function.

• Metric: a function to monitor the network performance during training and testing
phases for informational purposes only.

The precise role and specs for each of these concepts will be discussed in detail in the
following sections.

2.2.2 Data Representations for Neural Networks

Most ML systems nowadays use tensors as their primitive data structure. In fact, ten-
sors are fundamental to the field.

In essence, tensors are holders for numbers. We are all familiar with matrices, which
are 2D tensors. Think of tensors as a generalization of matrices to an arbitrary number
of dimensions, also known as axes.

A tensor is characterized by three main features:

• Axes: e.g., a 3D tensor has three axes and a 2D matrix has two axes.

• Shape: e.g., a (3, 3, 5) 3D tensor, a (3, 5) matrix, a (5,) vector, or a () scalar.
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• Type: e.g., float32, uint8, or float64.

Generally, color images have three dimensions, namely, height, width, and depth. On
the contrary, grayscale images have a single color and hence depth. They can, there-
fore, be saved in 2D matrixes, although, by convention, they are saved in 3D tensors
of an one-dimensional channel.

As we have already discussed, in DL, images are processed in batches. So, in practice,
images are stored in 4D tensors of shape (samples, height, width, depth). For example, a
batch of 32 grayscale images of size 128 × 128 are stored in a tensor of shape (32, 128,
128, 1), whereas a batch of 32 color images of the same size are stored in a tensor of
shape (32, 128, 128, 3) (see figure 2.8).

FIGURE 2.8: A 4D channels-first image data tensor.

Finally, it’s worth mentioning that, in general, there are two conventions of shapes
for image tensors; the channels-first and the channels-last. TensorFlow uses the latter
convention, based on which the depth axis is placed at the end, i.e., (samples, height,
width, depth).

2.2.3 Anatomy of a Neural Network

In this section, we will take a closer look at the core components of NNs that we intro-
duced earlier in this chapter:

• Layers and model.

• Input data, targets, and predictions.

• Loss function.

• Optimizer.

The visual interaction of these components is illustrated in figure 2.7. First of all, the
network consists of layers that are connected with each other, and its purpose is to
produce predictions from the input data. Then, the loss function compares the predictions
to the targets, calculating a loss value, which essentially is a measure of how well the
predictions match with the targets. Finally, the optimizer uses the loss value in order to
adjust the weights of the network accordingly.
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Since we now have a high-level idea of the purpose of each component, let’s dive into
the specifics.

The underlying component in NNs is the layer; a data-processing module that takes
one or more tensors as input and returns one or more tensors as output. It’s worth-
while to mention that some layers are stateless, but most often than not, they have a
state. Moreover, some layers are more appropriate for certain tensor formats and data
types than others. For instance, image data, which are stored in 4D tensors, is usually
processed by 2D convolution layers.

As we already mentioned in a previous section, a DL model is a directed acyclic graph
(a.k.a. DAG) of layers, with the most common example being a linear stack of layers,
mapping a single input to a single output.

The architecture of a model defines a hypothesis space, and thus, by choosing one
over the others, we restrict our hypothesis space to a certain series of tensor operations.
Once there, the final step is to search for a good set of weights for all the tensors
involved in these operations. Obviously, picking the right architecture is more an art
than a science, and therefore, only practice can make us better NN practitioners.

Now, let’s talk briefly about activation functions and why they are considered so
important. But before we do so, let’s examine a very simple network, like the one
illustrated in figure 2.9.

FIGURE 2.9: Sample three-layer network.

By the way, the network in figure 2.9 can be easily implemented in Keras as described
in gist 2.1.

1 from keras import models , layers
2 base = models.Sequential ()
3 base.add(layers.Dense (32, activation=’relu’, input_shape =(1000 ,)))
4 base.add(layers.Dense (32, activation=’relu’))
5 base.add(layers.Dense(1, activation=’sigmoid ’))

GIST 2.1: Sample model definition in Keras.

Without an activation function, the dense layer would consist of two linear operations -
i.e., a dot product and an addition - and would be expressed by y = f (w · x + b).
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In such a scenario, the hypothesis space would be too confined and would not take
advantage of the multiple representation layers because a deep stack of linear layers
would still perform a linear operation. In order to get access to a wealthier hypothesis
space that would benefit from deep representations, we need an activation function, the
purpose of which is to introduce non-linearity. We are not done yet, though!

Firstly, it’s extremely important to choose the right loss function for the right problem.
For example, multi-class @ single-label classification problems work better with cate-
gorical_crossentropy loss, whereas multi-class @ multi-label classification problems work
better with binary_crossentropy loss. So, in general, the rule of thumbs work pretty
well for simple problems. On the contrary, though, truly new research problems often
require truly new objective functions.

Secondly, it’s important to choose a proper optimizer, the goal of which is to find the
optimal weights that minimize the total error. In other words, it’s an important mecha-
nism toward the optimization of both weights and biases, and thus the minimization
of the loss value. Obviously, there are several optimizers to choose from depending on
the problem we are trying to solve, but almost always of some GD variant.

2.3 Machine Learning Best Practices

In this section, we will establish a solid framework for tackling ML problems. More
specifically, we will combine various techniques, including model evaluation, data pre-
processing, feature engineering, class-imbalance handling, into a comprehensive workflow
for solving any supervised learning task using NNs.

2.3.1 Supervised Learning

The goal in supervised learning is to learn the relationship between the inputs and the
targets. The most popular category of supervised learning is classification, which breaks
down further into binary, multiclass, and multilabell. Almost all ML applications
that are in the spotlight today - such as image classification - fell into this category.

It’s, for sure, a complex domain that involves many specialized terms. We already
came across some of them in the previous sections, and we will see more of them in a
bit. They come with precise definitions with which we should all be familiar. So, let’s
get started.

• Sample: What goes into our model.

• Prediction: What comes out of our model.

• Target: What we expect our model to predict.

• Error: The distance between prediction and target.

• Classes: A set of possible labels to choose from.

• Label: A specific instance of a class annotation.

• Ground: All targets for a dataset.

• Binary: Each sample is categorized into two exclusive categories.
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• Multiclass: Each sample is categorized into more than two exclusive categories.

• Multilabel: Each sample can be assigned multiple labels.

• Batch: A set of samples processed on training toward a gradient descent update.

2.3.2 Model Evaluation

We already know that the main challenge in ML projects is to build models that gen-
eralize well. Consequently, one of the first steps in ML workflows is to split the raw
dataset into train, validation, and test. Skipping to do so, but rather evaluating the
model on the same data it was trained, and a few epochs later, the model will be-
gin to overfit: i.e., the performance of the model on unseen data will start degrading
compared to the known one.

Having said that, let’s discuss some useful techniques to avoid overfitting. The process
is pretty straightforward. First, we train our model on the train data. Next, we eval-
uate it on the validation data. Note that we usually repeat the two steps again and
again with different hyper-parameters. Finally, once our model is ready to go live, we
evaluate it for one last time, but this time on the test data.

Someone may ask why wasting a portion of the data for validation when we can just
use the test set? We will not get into details here, but the main reason is related to the
information leak concept.

At the end of the day, we will end up with a model that performs artificially well on
the validation data. However, what we should really care about is its performance
on the unseen data. Therefore, the importance of the test set is vital. There are several
techniques to split the raw data into three parts, so let’s quickly study the most popular
ones.

In the simple hold-out validation technique, we keep some fraction of the raw data sep-
arated as our test set. Then, we train on the first part and evaluate on the second.
Schematically, this technique looks like figure 2.10.

FIGURE 2.10: Simple hold-out validation.

This technique is fast to implement and execute, but it comes with a big flaw: if very
little data is available, then both validation and test sets may contain too few samples,
and, therefore, neither of them will be representative of the original data.

Fortunately, the k-fold cross-validation technique comes to the rescue, as it can partially
address this flaw. On the negative side, it’s more complex to implement, and it takes
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significantly more time to execute. The main idea is to split the original dataset into
K partitions of equal size. For each partition p, we train a model on the remaining
K-1 partitions and evaluate it on partition p. The final score is then the average of all
K scores obtained. Schematically, the 3-fold cross-validation technique looks like figure
2.11.

FIGURE 2.11: Three-fold cross-validation.

It’s worth mentioning that a quick and dirty way to identify whether we should
choose k-fold cross-validation over simple hold-out validation is based on the size of vari-
ation among the successive shuffle-split-train-evaluate rounds.

Before we finish off this section, it’s important to keep an eye out for the following two
rules when choosing an evaluation technique:

• Data representativeness: Both train and test sets should represent the raw data
as good as possible. To ensure this, it’s always suggested to randomly shuffle
the raw data before splitting.

• Data redundancy: If some samples appear twice in the raw data, then we might
end-up testing part of the train data. To avoid this, we should always make sure
that train and validation sets are disjoint.

2.3.3 Data Pre-Processing

Before we deep dive into model development, we must tackle the critical question of
how to prepare the data before feeding them into a NN. Most of these techniques are
domain-specific, and thus, they will not be covered here; instead, we will only review
the basics that are common to all domains.

As the name reveals, data pre-processing aims at making the data ready for consump-
tion by NNs. This process involves multiple steps, including but not limited to, vector-
ization, normalization, and handling missing values. Let’s look at each of them briefly.

Vectorization is the process where input data is turned into tensors. Recall that all
inputs and targets in a NN must be tensors of integer or floating-point numbers.

Normalization is the process where input data become small and homogenous. Skip-
ping this step will result in large gradient updates that will prevent the NN from con-
verging. Especially in the context of CV, the general rule of thumb is:
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• Normalize each feature independently to have a mean of 0.

• Normalize each feature independently to have a standard deviation of 1.

Handling Missing Values is the process where missing values are set to 0, provided
that 0 is not a meaningful value for the given problem. As a result, the NN will learn
that value 0 means missing and thus, will start ignoring it.

2.3.4 Feature Engineering

In a nutshell, FE is all about making a problem easier to solve by describing it in a
much simpler fashion. In order to achieve this, it’s often required that we have a good
understanding of the problem at hand.

It’s a process that not only requires good knowledge of various statisticcal methods but
most importantly, deep knowledge of the underlying data. This will allow the algo-
rithm to work better by applying hardcoded transformations to the data before it goes
into the model. In general, it’s not reasonable to expect a model to learn from entirely
arbitrary data. Instead, the data needs to be presented to the model in a way that will
make training fast and efficient.

Before the DL era, FE used to be extremely critical because classical SL algorithms do
not have hypothesis spaces rich enough to learn useful features by themselves. Thus,
the way we fed the data to the algorithm was crucial to its success.

Nowdays, DL removes the need for most FE tasks because NNs are capable of ex-
tracting useful patterns from the data automatically. However, using NNs by no means
implies that we do not have to worry about FE. In fact, it is and will always be impor-
tant and relevant because good features always help us solve problems more elegant
and with fewer:

• Computational resources.

• Training samples.

2.3.5 Class-Imbalance Handling

Not all datasets are perfect. In fact, we will be extremely lucky if we ever get a
perfectly-balanced, real-world dataset. Most of the time, our data will have some
level of class-imbalance, which is when each of our classes has a different number of
examples.

Nevertheless, always remember that class-imbalance techniques are only important
when we care about the minority classes. For instance, let’s assume that we are work-
ing on a multi-class or a multi-label image classification task where class distribution
looks like figure 2.12.

Initially, it may seem reasonable to balance our data, but soon enough, we may realize
that we are not interested in the minority classes but rather in getting the highest pos-
sible accuracy. That means balancing our data will have a negative effect since most of
the accuracy comes from classes with many examples. In other words, minority classes
do not contribute much to our goal, and thus, balancing is not required and must be
avoided.
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FIGURE 2.12: Class distributions for train and test.

Now let’s assume we work on a task where balancing our data is critical. In such a
scenario, the following three techniques will come in handy.

The weight balancing method balances the data by adjusting the weight of each class
when computing the loss. Typically, each class in loss function will carry equal weight.
However, sometimes we might want certain classes to hold more weight if they are
more important to us. This can be done by multiplying the loss of each class by a
class-specific scalar.

The main idea behind the focal loss method is that instead of giving equal weighting
to all training classes, it down-weights the well-classified ones. This results in putting
more emphasis on the classes that are hard to classify. In other words, given any
imbalance dataset, the majority classes will quickly become well-classified since we have
much more data for them. The focal loss comes into play when we also want to
achieve high accuracy in the minority classes. It does so by giving them more relative
weight during training. Check out figure 2.13 for an illustration.

Selecting the optimal weights for all classes can often become difficult. Applying a
simple inverse frequency might not work well all the time. The focal loss can some-
times help but can potentially result in weighting down all well-classified examples.
A third option is to use sampling. Check out figure 2.14 for an illustration.

Consider two classes, blue and orange, where blue has far more samples than orange.
There are two pre-processing techniques that can help us tackle the imbalance problem!
Keep on reading to find out more!

According to the undersampling technique, we select only some examples from the
majority class - in particular as many examples as the minority class has - such that the
probability distribution of both classes is equal.

According to the oversampling technique, we generate a few copies of the minority
class - in particular as many examples as the majority class has - such that the probability
distribution of both classes is equal.
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FIGURE 2.13: Focal loss distribution for different γ.

FIGURE 2.14: Undersampling and oversampling.

2.4 Advanced Concepts in Deep Learning

Training a deep NN is almost never an easy task. Below are some of the challenges we
may encounter during that journey:

• We may face either of the vanishing and exploding gradients problems. This hap-
pens when the gradients are getting smaller and smaller or bigger and bigger,
which eventually results in making lower layers very hard to train.

• We may not have enough training samples for such a large network, or it might
be too expensive to label new ones.

• The training process may be deadly slow.

• A model with millions of parameters runs the risk of overfitting, particularly
when there are not enough training samples or when the available samples are
too noisy.

In this section, we will go through each of these challenges and present some techniques
to overcome them. This will enable us to train some very deep NNs. So let’s get
started!
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2.4.1 Vanishing and Exploding Gradients Problems

As mentioned earlier in this chapter, the backpropagation algorithm spreads the error
gradient from the output layer all the way to the input layer. Once the algorithm has
computed the gradient of the loss function w.r.t. each parameter in the network, it uses
these gradients to adjust each parameter with a GD step.

However, the gradients often get smaller and smaller as the algorithm moves down
to the lower layers. As a result, the weights of the lower layers are left almost intact,
and training never converges toward the optimal solution. We call this the vanish-
ing gradients problem. At other times, the opposite may happen: the gradients get
bigger and bigger until layers get extremely large weight updates, and the algorithm
diverges away from the optimal solution. We call this the exploding gradients problem.
More generally, deep NNs suffer from unstable gradients; different layers may learn
at entirely different speeds.

This contradictory behavior was experimentally observed a long time ago, and it was
one of the reasons deep NNs were nearly forgotten in the early 2000s. It was not clear
what made the gradients to be so sensitive when training a deep NN, but some light
was thrown around 2010 when it was shown that, with the logistic sigmoid function
and the weight initialization scheme, the variance of the outputs of each layer is much
higher than the variance of its inputs.

2.4.2 Batch Normalization

Although using a better kernel initializer and activation function can considerably mini-
mize the risk associated with both the vanishing and exploding gradients at the begin-
ning of training, no one can promise that neither of them will not come back at a later
stage of the process.

Fortunately, the BN technique, which was introduced around 2015, can address the
aforementioned problem in most cases. It does so by adding an operation in the model
either before or after the activation function of each hidden layer. More specifically:
first, it zero-centers and normalizes each input, and then it scales and shifts the result.
The first part should be obvious by now. What the second part does is basically to let
the model learn the optimal values for scale and mean of each of the layer’s inputs.

The team of researchers behind BN showed that this operation could indeed improve
a variety of deep NNs. Their efforts led to a significant improvement in the ImageNet
classification task. The main features of BN can be summarised as follows:

• The vanishing gradients problem is reduced.

• The networks are less sensitive to the weight initialization.

• The learning process is accelerated by the use of larger learning rates.

• The need for regularization techniques is reduced since BN acts like a regularizer.

On the negative side, BN adds some complexity to the model. Moreover, the NN
makes slower predictions due to the extra calculations required at each layer. For-
tunately, it’s usually possible to combine the BN layer with the previous layer, after
training, so to avoid the runtime penalty.
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2.4.3 Faster Optimizers

Training a very large and deep NN can become extremely slow. We have already
discussed a few different techniques to accelerate training. Another significant speed
boost can come from the use of a faster optimizer. In this section, we will present the
most popular alternatives to GD.

Imagine a bowling ball going down a soft slope on a smooth surface. The ball will start
out slowly but will pick up momentum quickly and will eventually reach a maximum
speed. This is essentially the main idea behind momentum optimization. On the
contrary, classic gradient descent will simply take small, steady steps down the slope,
and hence the algorithm will take significantly more time to reach the bottom of the
valley.

At each iteration, momentum optimization subtracts the local gradient from the mo-
mentum vector, multiplies the vector by the learning rate hyperparameter η, and fi-
nally updates the weights by adding this vector. In order to prevent the momentum
from growing too large, the algorithm introduces the momentum hyperparameter β,
with a typical value of around 0.9.

Going back to the bowling ball problem again, gradient descent starts by quickly go-
ing down the steepest slope, although not directly toward the global optimum, and
then very gently reaches the bottom of the valley. In contrast, AdaGrad corrects its
direction earlier to point a bit more toward the global optimum. In short, AdaGrad
decays the learning rate, but it does so faster for steep dimensions than for dimensions
with gentle slopes (see figure 2.15). Another advantage is that this algorithm requires
significantly less tuning of the learning rate hyperparameter η.

FIGURE 2.15: AdaGrad vs. gradient descent.

Despite all the improvements, AdaGrad runs the risk of slowing down much faster
and not converging to the global optimum. RMSProp overcomes this limitation by
accumulating only the gradients from the most recent iterations rather than all the
gradients since the beginning of training. In order to accomplish this, the algorithm
introduces the decay rate hyperparameter β, with a typical value of around 0.9.

Another very popular algorithm called Adam, combines the ideas of momentum op-
timization and RMSProp. In short, this algorithm keeps track of an exponentially
decaying average of past gradients as well as of past squared gradients. Since it’s an
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adaptive learning rate algorithm, it requires less tuning for the learning rate hyperpa-
rameter η, with a typical value of around 0.001, making this algorithm even easier to
use than gradient descent.

Finding a reasonable learning rate is very important and challenging at the same time.
If we set it too high, training may diverge. If we set it too low, training will eventually
converge to optimum, but very possible, it will take a long, long time. If we set it a little
too high, it will make good progress at the beginning, but very possible, it will end up
jumping around the optimum and never really converge. In reality, we will always face
limitations in computational resources, which will force us to interrupt training before
it has wholly converged, yielding a sub-optimal solution (see figure 2.16).

FIGURE 2.16: Learning curves for various learning rates η.

An easy way to find an acceptable learning rate is by training the network for a few
hundred iterations, exponentially increasing the learning rate from small to large val-
ues, and then looking at the learning curve and selecting a value marginally smaller
than the one at which the learning curve starts coming back. The final step involves the
re-initialization and the re-training of the network based on the chosen learning rate.

In practice, however, we can always do better than using the optimal constant learn-
ing rate as there are far better ways to reach a sub-optimal solution much faster. For
example, we can start with a large learning rate and then reduce it once training stops
making fast progress. An alternative idea would be to start with a small learning rate,
then increase it, and then drop it again. These strategies are called learning schedules
with the most commonly used ones listed below:

• Power scheduling.

• Exponential scheduling.

• Piecewise constant scheduling.

• Performance scheduling.

• 1cycle scheduling.

2.4.4 Overfitting and Underfitting

One of the biggest challenges in ML is finding the right balance between optimization
and generalization. The former is about adjusting the model to get the best perfor-
mance possible on the training data, whereas the latter is about how well the trained
model is performing on data it has never seen before. Although our goal is always
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to get good generalization, in practice, there is no way to control it; all we can do is
adjusting our model based on the training data.

When training begins, optimization and generalization are going hand-in-hand: i.e.,
when the loss on training data is getting lower, so does the loss on test data. At this
point, our model is said to be underfit, which essentially means that the network has
not yet modeled all relevant patterns in the training data. However, after a few itera-
tions, the model is said to be overfit, which essentially means that the network begins
to learn patterns that are specific to the training data but not very relevant to the test
data.

The moment we notice overfitting or underfitting, we have to decide whether it’s more
reasonable to spend time pre-processing the data and re-tuning the network or go out
and collect more data. The last thing we want is to spend a significant amount of time
and money working in one direction only to find out it hardly improved the network
performance.

A common misbelief among ML beginners is that throwing more data can always
improve the performance of the model. Unfortunately, collecting and labeling more
data is not always an option in reality. Also, depending on the problem, it could be
very expensive or time-consuming to collect and label new data.

If acquiring more data is not an option, the next best solution is to control the quantity
of information or to add constraints on what information our model is permitted to
store. If a network can only learn a small number of patterns, the optimization pro-
cess will force it to concentrate on the most important patterns, which have a higher
likelihood of generalizing well.

As we discussed earlier, one way to escape overfitting is to get more training data.
However, this is not always a feasible solution. An alternative solution is to augment
the training data by generating new instances through some special type of transfor-
mations called data augmentations. This is a very popular technique that gives the
learning algorithm more training data and ultimately reduces overfitting. There are
various types of transformations that we can use, including, but not limited to, flip-
ping, rotating, scaling, zooming, lighting, etc. Figure 2.17 illustrates some of these
transformations applied to an image of the 6 digit.

FIGURE 2.17: Transformations applied to a MNIST image.



2.4. Advanced Concepts in Deep Learning 25

Another way to prevent overfitting is to reduce the extent of the model. As expected,
a model with more parameters has a bigger memory capacity, making the learning of
mappings between samples and targets much easier, but with the cost of poor general-
ization. In contrast, a model with a smaller memory capacity will not be able to learn
the mappings as easily, forcing it to learn only compact representations. At the same
time, a model should have enough parameters to avoid underfitting. As we can see,
there is always a trade-off between too much capacity and not enough capacity.

Sadly, there is no secret sauce when it comes to finding the ideal number of layers
or the ideal size for each layer. Instead, we have to evaluate a number of different
architectures in order to decide the most appropriate one for our training data. It’s very
common to start with relatively few layers and parameters and then add new layers
or increase their size until we see decreasing loss returns on the validation set.

Intuitively, complex models are more likely to overfit than simple ones. Within this
framework, a simple model is a model in which the distribution of parameter values
has less entropy. A common technique to ease overfitting is to set constraints on the
complexity of the network by pushing its weights to take smaller values and hence
make their distribution more regular. This is the so-called weight regularization, which
comes into two flavors as shown below, and works by adding to the loss function a cost
associated with having large weights.

• L1 regularization: the cost added is proportional to the absolute value of the
weight coefficients.

• L2 regularization: the cost added is proportional to the square value of the
weight coefficients.

Finally, let’s briefly talk about one of the most commonly used layers to prevent over-
fitting called dropout. It consists of randomly setting to zero a percentage of neurons
during training. This percentage, called dropout rate, is identified as a hyperparame-
ter with values ranging from 0.2 to 0.5 (see figure 2.18).

FIGURE 2.18: Dropout applied to an activation matrix.

By zeroing, we mean these neurons are not considered during a particular forward
or backward pass. It may seem counterintuitive to throw away a connection in our
network, but as the network is getting trained, some nodes can dominate others or
end up making large mistakes, and dropout gives us a way to balance our network so
that every node works equally towards the same goal, and if one makes a mistake, it
will not dominate the behavior of the model as a whole. We can think of dropout as a
technique that makes a network resilient; it makes all the nodes work well as a team by
making sure no node is too weak or too strong.
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Chapter 3

Deep Learning in Computer Vision

3.1 Introduction

CV is the most rapidly growing CS field nowadays, thanks to the immense advances
in AI and DL that took place a few years ago. The most exciting thing of all is how
rapid advances in research enable new applications to be built every day and across
different domains. Such applications were impossible to be developed just a few years
ago.

Although this chapter is dedicated to CV, many of the concepts here are also related to
DL. For example, we will have the chance to talk about the most popular architectures,
namely, ANNs, CNNs, and RNNs.

The core concept in AI systems is to perceive the environment and take actions based
on these perceptions. CV deals with the visual perception part. It’s the science of
perceiving and understanding the world through images and videos by constructing
a physical model of the world so that AI systems can act appropriately.

Let’s dive deeper into each of the concepts involved to better understand how they
work.

3.1.1 Visual Perception

At its most basic form, visual perception is the act of observing patterns and objects
through images. Let’s take autonomous vehicles as an example. Under this context,
visual perception is about understanding the surrounding objects and their specific de-
tails, such as pedestrians, lane centering, traffic signs, etc. That is why the word
perception was added to the definition. We are not just looking to capture the sur-
roundings. We are trying to build systems that can really understand the environment
through visual inputs.

3.1.2 Vision Systems

Up until recently, the terms image processing and computer vision were used interchange-
ably. But as you can imagine, this is not very accurate; having machines processing an
image is entirely different from understanding what is presented in an image. Image
processing became part of a bigger, more complex system that aims at understanding
the content of an image, not just processing it.
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Fundamentally, vision systems are the same for humans, animals, insects, and most
living organisms. They consist of a sensor (or eye) to capture the image and a unit
(or brain) to process and interpret the image. The system outputs a prediction of the
image components based on the information extracted from the image (see figure 3.1).

FIGURE 3.1: Human vision system.

Now let’s examine how the human vision system works. Suppose we want to interpret
the image of the dogs above. We look at it and we directly understand that the image
consists of a few dogs. It comes pretty naturally to us to detect and classify objects in
this image because we have been trained over the years to identify dogs. We can train
our brains to identify almost anything. Same with computers. We can teach machines
to learn and identify objects, but humans are much more intuitive than machines. It
takes just a few image samples for humans to learn to identify objects, but it takes
thousands or even millions of image samples to learn to identify objects for machines.

The human vision system has inspired scientists in recent years to extend this visual
ability to machines. So, in order to mimic the human vision system, we need the same
two components, namely, a sensing device to mimic the function of the eyes in cap-
turing the image and a sophisticated algorithm to mimic the function of the brain in
interpreting the content (see figure 3.2).

FIGURE 3.2: Computer vision system.

3.1.3 Sensing vs. Interpreting

As we already mentioned, the vision systems are designed to fulfill two specific tasks,
and in order to perform them, they rely on two specialized components.

The first one is the sensing device, the aim of which is to capture the surroundings
of the specific environment. It goes without saying that this first component is con-
sidered the eye of the vision system. Whether it’s a camera, a radar, an X-ray, or a
combination of them, the goal is always to provide the environment’s full scene to
accomplish the task at hand. Each of these devices is used for a specialized task. As
a result, the first step in designing end-to-end vision systems is always to choose the
right device for the right problem.
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The second one is the interpreting device, the aim of which is to take the output from
the first component and learn to identify objects of interest in it. It goes without saying
that this second component is considered the brain of the vision system. It is most
commonly implemented in the form of ANNs, which were invented as part of the
scientists’ efforts to build an artificial brain. Inspired by how the human brain works,
scientists reverse-engineered the central nervous system to gain useful insights and
ultimately build an artificial brain.

One could clearly say that there is an analogy between biological neurons and arti-
ficial systems. Both contain a main processing element called neuron, an input signal
X1, X2, ..., Xn, and, of course, an output value (see figure 3.3).

FIGURE 3.3: Biological vs. artificial neuron.

The learning behavior of biological neurons inspired scientists to create an artificial
network of neurons that are connected to each other. Imitating how information is
processed in the human brain, each individual artificial neuron fires a signal to all
neurons that it’s connected to when enough of its input signals are activated. Thus,
neurons have a very simple mechanism on the individual level, but having many of
these neurons stacked in layers, with each of them connected to thousands of other
neurons, ultimately leads to a learning behavior (see figure 3.4).

FIGURE 3.4: Artificial neural network.
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Building a multi-layer NN is called DL. DL models learn representations through a
sequence of data transformations that go several layers deep. In the next chapter, we
will study the most popular DL architectures, namely, ANNs, CNNs, and RNNs, and
we will present how they are used in different DL applications.

3.1.4 Machines vs. Humans

Some people may wonder if ML can achieve better performance than the human brain.
Well, if they had asked this question ten years ago, then, most probably, the answer
would be no, machines cannot surpass humans. But let’s take a look at the following
scenarios:

• Suppose we were given a book of 10k dog images classifying their breeds, and
we were asked to learn the properties of each breed. How long would it take us
to study the different 130 breeds in 10k images? And if we were given a test of
100 dog images and asked to label them based on what we learned, out of the
hundred, how many will we get right? Well, a NN that is trained in a couple of
hours, can achieve more than 95% accuracy.

• But NN can contribute to arts too. For example, a NN can study the patterns
in the strokes, colors, and shading of a particular artwork and then transfer the
style from the original image into a new one, creating a genuine piece of art
within seconds.

It turns out that the recent AI and DL advances have allowed machines to surpass
human visual abilities in many image classification and object detection tasks. At the
same time, their capabilities have been expanded to many other fields as well. But,
do not take our word for it; let’s revisit this question after the next section, where we
review some of the most popular CV applications using DL technology.

3.1.5 Sample Applications

Computers started to recognize human faces in images decades ago, but only in recent
years have AI systems started rivaling computers’ ability to classify objects in pho-
tos and videos. Thanks to the dramatic evolution, both in computational power and
available data, AI and DL have achieved superhuman performance in many complex
visual perception tasks, including, but not limited to, image search, image captioning,
image classification, and object detection.

Although the focus of this work is on visual applications, deep NNs can be used in
a variety of tasks. Of course, due to time constraints, we won’t list all possible ap-
plications here; this would require an entire thesis. Instead, we will give a bird’s eye
view on some of the most important DL concepts from the aspect of medical image
diagnosis.

Image classification aims at assigning a label to an image from a pre-defined set of
categories. CNN is the type of NN that truly shines in processing and classifying
images in many different applications. The lung cancer diagnosis is such a growing
problem (see figure 3.5). Several CV companies have decided to tackle this challenge
using DL technology. The main reason lung cancer is very dangerous is that physicians
usually diagnose this in the mid or late stages. When examining CT scans for lung
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cancer, doctors typically use their eyes to search for small nodules in their patients’
lungs. At the early stages, the nodules are usually tiny and harder to spot.

FIGURE 3.5: Lung cancer diagnosis.

Almost every lung cancer starts as a small nodule. In addition, it always appears in a
wide variety of shapes. Unfortunately, it takes doctors years to learn all these different
shapes. Doctors are very good at identifying medium and large nodules (i.e., around
6-10 millimeters). But the smaller ones (i.e., like 4 mm or smaller) are very hard to get
spotted. Deep NNs, especially CNNs, can learn these features automatically from X-
ray or CT scans. Most importantly, they can detect small nodules much earlier, hence
way before the start becoming deadly.

3.2 Deep Convolutional Neural Networks

This chapter introduces CNNs, a class of deep NNs, used almost universally in CV
applications. We’ll learn to apply them to image classification problems, particu-
larly those involving small training datasets, which is the most common use case in
academia. On the contrary, big tech companies usually work on much bigger and
proprietary datasets.

3.2.1 Quick Introduction

Let’s dive deeper into the theory of what CNNs are and why they have been so suc-
cessful at CV tasks.

Gist 3.1 shows a basic CNN, which is essentially a stack of Conv2D and MaxPool-
ing2D layers. We’ll see in a minute exactly what they do and how they work.

1 >> from keras import layers
2 >> from keras import models
3

4 >> model = models.Sequential ()
5

6 >> model.add(layers.Conv2D (32, (3, 3), activation=’relu’, input\_shape
=(28, 28, 1)))

7 >> model.add(layers.MaxPooling2D ((2, 2)))
8 >> model.add(layers.Conv2D (64, (3, 3), activation=’relu’))
9 >> model.add(layers.MaxPooling2D ((2, 2)))

10 >> model.add(layers.Conv2D (64, (3, 3), activation=’relu’))
11

12 >> model.add(layers.Flatten ())
13 >> model.add(layers.Dense (64, activation=’relu’))
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14 >> model.add(layers.Dense (10, activation=’softmax ’))
15

16 >> model.summary ()

GIST 3.1: Basic convolutional neural network implementation.

Usually, CNNs are fed with input tensors of shape (image_width, image_height, im-
age_channels). For example, here, we tell the network to process inputs of size (28,
28, 1), which is the required format for the MNIST dataset. This can be easily done by
setting argument input_shape=(28, 28, 1) in the first layer.

As we can see, every Conv2D and MaxPooling2D layer’s output is a 3D tensor of shape
(image_width, image_height, image_channels). Moreover, both width and height shrink
as we go deeper into the network. On the contrary, channels is controlled by the first
input argument of the Conv2D layers (usually of size 32 or 64).

The next step is to feed the final output tensor (of shape (3, 3, 64)) into a densely-
connected classifier. However, the problem is that the classifier requires a 1D vector,
whereas the current output is a 3D tensor. Therefore, we need to flatten the 3D output
into a 1D one and then add some densely-connected layers on top.

As we can see, the (3, 3, 64) outputs are flattened into vectors of shape (576,) before
going through the two densely-connected layers.

For the MNIST dataset, a ten-way classification is required. We can do so using a
final layer with ten outputs and a softmax activation function. Gist 3.2 shows the
architecture of the underlying network:

1 Layer (type) Output Shape Param #
2 ========================================================================
3 conv2d_1 (Conv2D) (None , 26, 26, 32) 320
4 ________________________________________________________________________
5 maxpooling2d_1 (MaxPooling2D) (None , 13, 13, 32) 0
6 ________________________________________________________________________
7 conv2d_2 (Conv2D) (None , 11, 11, 64) 18496
8 ________________________________________________________________________
9 maxpooling2d_2 (MaxPooling2D) (None , 5, 5, 64) 0

10 ________________________________________________________________________
11 conv2d_3 (Conv2D) (None , 3, 3, 64) 36928
12 ________________________________________________________________________
13 flatten_1 (Flatten) (None , 576) 0
14 ________________________________________________________________________
15 dense_1 (Dense) (None , 64) 36928
16 ________________________________________________________________________
17 dense_2 (Dense) (None , 10) 650
18 ========================================================================
19 Total params: 93 ,322
20 Trainable params: 93,322
21 Non -trainable params: 0

GIST 3.2: Basic convolutional neural network summary.

Without further ado, let’s discuss the underlying network’s main components (see
figure 3.6). The corresponding text representation goes like this: INPUT => CONV =>
RELU => POOL => CONV => RELU => POOL => FC => SOFTMAX. Note that both
RELU and SOFTMAX are not really standalone layers but rather the previous layers’
activation functions. They are presented like that here to highlight that the network
designer used the RELU activation function in the CONV layers and the SOFTMAX
activation function in the FC layer. Furthermore, it worth mentioning that although
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the network contains two CONV layers and one FC layer, in practice, we can add as
many CONV and FC layers as we see fit. Finally, recall that the CONV layers are used
for the feature extraction, whereas the FC layers are used for the actual classification.

FIGURE 3.6: Basic convolutional neural network components.

There are three main types of layers that we will see in almost every CNN:

• Convolutional layer.

• Pooling layer.

• Dense layer.

Now that we saw the full architecture let’s dive deeper into each layer type separately
to understand better how they work. Then, at the end of this section, we will put them
all back together.

3.2.2 Convolutional Layer

Convolutional layers are the building blocks of CNNs. They act like a feature finder
window that slides over the image pixel-by-pixel to extract meaningful features that
identify objects in the image.

In functional analysis, convolution is the operation of two functions to produce a third
modified function. In the context of computer vision, the first function is the input
image, whereas the second function is the convolutional filter. We can think of it as a
series of matrix multiplications to produce a modified image with new pixel values.

Let’s zoom into the first convolutional layer to see how it processes an image (see
figure 3.7). By sliding the convolutional filter over the input image, the network breaks
the image into little chunks and processes them individually to assemble the modified
image called feature map.

Now that we have the big picture, let’s define some key terms (see figure 3.8):

• The small 3 × 3 matrix is the convolutional filter, a.k.a. kernel.
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FIGURE 3.7: Zoom in to a convolutional layer.

• The kernel slides over the original image pixel-by-pixel and does some matrix
multiplications to get the new convolved image’s values at the next layer.

FIGURE 3.8: Zoom in to a convolutional filter.

The convolutional matrix is for CNNs what the connection weights are for MLPs.
That means it is randomly initialized at the beginning, and its values are learned by the
network later on during training.

The kernel is a matrix of weights that slides over the image to extract features. The
kernel size here refers to the dimensions of the matrix (see figure 3.9).

FIGURE 3.9: Common kernel sizes.
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The kernel size is one of the hyper-parameters that needs to be set when building a
convolutional layer. Like most hyper-parameters, there is no right answer that fits all
problems. The rule of thumb is that smaller filters capture very small details in the
image, whereas bigger filters miss these details.

Recall that these filters contain the weights that will be learned by the network dur-
ing training. Theoretically, the bigger the kernel size is, the deeper the network, and
hence, the better it learns. Unfortunately, this comes with higher computational com-
plexity as well as a high chance of overfitting.

Kernels are almost always of square shape, with dimensions ranging from 2 × 2 to
5 × 5. Technically, we can use much bigger sizes, but very possible, this will cause the
loss of valuable information from the image.

The fundamental difference between convolutional layers and densely-connected layers
is that the former learn local patterns in their input feature space, whereas the latter
learn global ones. In the case of images, local patterns are found in small 2D windows
(e.g., of 3 × 3 size) of the inputs (see figure 3.10).

FIGURE 3.10: Convolutional layers learn local patterns.

This key feature gives CNNs two interesting properties (see figure 3.11):

• Translation-invariant pattern learning: After learning a certain pattern in the
upper-left corner of an image, CNN can recognize it anywhere. A densely-
connected network will have to learn the pattern again if it appears at another
location. This property makes CNNs very efficient when processing images (be-
cause the visual world is fundamentally translation invariant).

• Hierarchical-spatial pattern learning: The first convolutional layer will learn
small local patterns such as edges, the second one will learn larger patterns made
of the features in the first layer, and so on so forth. This property allows CNNs
to learn extremely complex visual concepts very efficiently (because the visual
world is fundamentally spatially hierarchical).

Convolutions work with 3D tensors, called feature maps, consisting of two spatial and
one depth axes (called width, height, and channels, respectively). In color images, the
depth is always three because those images are based on the RGB color model. On the
contrary, in gray-scale images, the depth is always one simply because those images
have no color. The convolution operation extracts chunks from its input feature map
and applies the same transformation to all of these chunks, producing an output fea-
ture map. This map is still a 3D tensor as it has width, height, and depth. However, the
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FIGURE 3.11: CNNs learn spatial hierarchies of patterns.

latter can be arbitrary because the different channels no longer stand for specific RGB
colors. Instead, they stand for filters that encode particular aspects of the input data,
e.g., a single filter could encode the concept of presence or absence of dogs in images.

Going back to the MNIST example, the first convolutional layer reads a feature map
of size (28, 28, 1) and writes a feature map of size (26, 26, 32). Each of the 32 output
channels contains a 26 × 26 array of values, which is a response map of the filter over
the input, specifying the response of that filter pattern at different locations in the
input (see figure 3.12). That is what the word feature map means: every dimension in
the depth axis is a filter, and the 2D tensor is a spatial map of the response of this filter
over the input.

FIGURE 3.12: From input image to response map.

Two key parameters specify convolutions:

• The size of the chunks extracted from the input images; the most typical sizes
are 3 × 3 and 5 × 5.
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• The depth of the output feature map computed by the convolution; the most
typical sizes are 32 and 64.

Convolutions work by sliding the kernel over the 3D input feature map, stopping at
every possible spot, and extracting the 3D chunk of the surrounding features. Each
of these chunks is then transformed via the convolution kernel into a 1D vector. All of
these vectors are then spatially recompiled into a 3D output feature map. Every spatial
spot in the output feature map corresponds to the same spatial spot in the input feature
map. For instance, the lower-right corner of the output contains information about the
lower-right corner of the input. The full process is illustrated in figure 3.13).

FIGURE 3.13: Multi channel 2D convolution.

We will not go into details here but bear in mind that the output spatial axes may differ
from the input ones. This may happen for two reasons:

• The border effect.

• The use of strides.

3.2.3 Pooling Layer

Adding more convolutional layers increases the depth of the output layer, which leads
to an increase in the number of parameters that the network needs to learn. The addi-
tion of hundreds of convolutional layers will generate a huge number of parameters.
The increase in the network dimensionality will increase the computational time and
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complexity in the learning process. This is exactly when the pooling layer comes in
handy. The pooling technique reduces the network’s size by reducing the number of
parameters passed to the next layer. The pooling operation resizes its input by apply-
ing a summary statistical function, such as minimum, maximum, average, etc., to reduce
the overall number of parameters passed on to the next layer.

The pooling layer’s goal is to downsample the feature maps produced by the convolu-
tional layer into a smaller number of parameters to reduce the computational time and
complexity. In practice, it’s very common to add a pooling layer after every convolu-
tional layer in CNNs (see figure 3.14).

FIGURE 3.14: Pooling layer.

As we can see from the previous example, pooling layers reduce the dimensionality of
the convolutional layers. This task is very important because complex CNNs contain
many convolutional layers, each of which with tens or hundreds of kernels. Since
each kernel contains the weights that the network learns, this can get out of control
very quickly, and the dimensionality of the convolutional layers can get very large.
Adding pooling layers will help us keep the important features only and pass them
along to the next layer, while shrinking the image dimensionality. Think of it as an
image compression process: we can reduce the image resolution while keeping its
most important features (see figure 3.15).

FIGURE 3.15: Dimensionality reduction.

In this example, the size of feature maps is cut in half after each MaxPooling2D layer.
More specifically, before the first MaxPooling2D layer, the feature maps are 26 × 26;
however, the max pooling operation cut them in half, i.e., 13 × 13. That’s precisely
the max pooling operation’s role: to aggressively downsample feature maps much like
strided convolutions.
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The max pooling operation consists of extracting windows from the input feature maps
and outputting each channel’s max value. It’s conceptually similar to convolution,
except that instead of transforming local chunks via a learned linear transformation,
they’re transformed via a static max tensor operation. A big difference from convo-
lution is that max pooling is usually performed with 2 × 2 windows and stride two,
whereas convolution is usually performed with 3 × 3 windows and no stride at all.

Simply put, the reason to use downsampling is to decrease the number of feature-map
coefficients to process as well as to produce spatial-filter hierarchies by making successive
convolutional layers look at increasingly large windows.

It worth pointing out that max pooling isn’t the only way to achieve downsampling. As
we discussed previously, we can also use strides in the earlier convolutional layer or
use average pooling where each local input chunk is transformed by taking the aver-
age value of each channel over the chunk. However, in practice, max pooling tends to
work better than either of these alternatives. The reason is, features tend to encapsu-
late the spatial presence of some patterns over the different blocks of the feature map,
and it’s more informative to look at the maximal presence of different features than
at their average presence. To conclude, the most reasonable subsampling technique is
first to produce dense maps of features and then look at the features’ maximal activation
over small chunks. Any other technique will probably cause the miss or the reduction
of feature-critical information.

3.2.4 Dense Layer

After going the image through the feature learning process using convolutional layers
and pooling layers, we have extracted all the features and have put them in a long
pipe. The next step is to use the extracted features to classify images. One way to
achieve this is by using the typical NN architecture called MLP.

MLPs work great in classification problems. Previously, we used convolutional layers
because MLPs lose important information when extracting features from images. On
the contrary, convolutional layers can process images without huge drawbacks. Now,
assuming that we have the features extracted and flatten, we can use regular MLPs to
classify new images.

We have already discussed the MLP architecture in detail in a previous section (see
figure 3.16).

To recap, here are the main components of this special type of NN:

• Input vector: In order to feed the features pipe of size (5, 5, 40) to the MLP for
classification, we need to flatten the former into a vector of size (1000,).

• Hidden layer: Similarly to what we do when building regular MLPs, we need to
add one or more fully connected layers, with each of them having one or more
neurons.

• Output layer: When our task involves more than two classes, it’s adviced to use
a softmax activation function with the same number of nodes as the number of
classes.

By now, we should be familiar with the three main types of layers in CNNs, namely,
convolutional, pooling, dense, as well as how to build small networks to solve simple
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FIGURE 3.16: Multi layer perceptron.

problems such as the MNIST digit classification task. Now let’s switch gears and talk
about the two most important CV concepts, namely, data preparation and transfer
learning.

3.3 Data Preparation

Preparing image data for CNNs is a challenging task. It involves scaling the pixel
values and using augmentation techniques during both training and evaluation steps.

This section presents some best practices around image preparation in classification
tasks. At the end of this section, we should be able to understand why:

• Images must be centered by subtracting the per-channel mean pixel value calcu-
lated on the training set.

• Augmentation during training must involve random rescaling, horizontal flips,
perturbations to brightness, contrast, and color, as well as random cropping.

• Augmentation during testing must involve a mixture of multiple rescaling of
each image and predictions for multiple different systematic crops of each rescaled
version of the image.

Let’s get started.

3.3.1 Preprocessing

We should now understand that data must be formatted appropriately into pre-processed
floating-point tensors before getting fed into a network. Initially, the data live on a
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hard drive as JPEG files. The steps for getting those files into a network are more or
less as follows:

• Read the image file.

• Decode the JPG content into a grid of RGB pixels.

• Convert the integers into floating-point tensors.

• Rescale the pixel values from [0, 255] to [0, 1].

The process may seem challenging at first, but luckily for us, Keras can cope with all of
these steps with ease. More specifically, class ImageDataGenerator of the keras.preprocessing.image
API allows us to quickly set up Python generators to automatically turn image files on
disk into infinite batches of pre-processed tensors. Gist 3.3 shows how this can be
accomplished:

1 >> from keras.preprocessing.image import ImageDataGenerator
2

3 >> train_datagen = ImageDataGenerator(rescale =1./255)
4 >> test_datagen = ImageDataGenerator(rescale =1./255)
5

6 >> train_generator = train_datagen.flow_from_directory(
7 train_dir ,
8 target_size =(150, 150)
9 batch_size =20,

10 class_mode=’binary ’
11 )
12

13 >> validation_generator = test_datagen.flow_from_directory(
14 validation_dir ,
15 target_size =(150, 150),
16 batch_size =20,
17 class_mode=’binary ’
18 )

GIST 3.3: Processing the data using batch and image generators.

Now, let’s have a look at the output of a generator. The generator yields batches of
150× 150 color images with their corresponding labels. Each batch consists of 20 sam-
ples, and therefore each iteration generates two objects, i.e., a matrix of size (20, 150,
150, 3) and a vector of size (20,). Also, note that the generator runs indefinitely, i.e., it
loops endlessly over the image folder. As a result, it is required to break the iteration
at some point, i.e., after a certain number of batches has been generated.

Next, we fit the model to the data using the image generator. We do so using the
fit_generator method, the first argument of which is a Python generator that yields
batches of inputs and targets endlessly. Keras needs to know how many samples to
draw before considering an epoch as finished because of the indefinite data genera-
tion. Argument steps_per_epoch comes to the rescue; after running for steps_per_epoch
steps, the fitting process moves to the next epoch. For example, here, we have batches
of size 20, so it takes 100 steps_per_epoch to reach our target of 2,000 samples.

When we use the fit_generator method, we can also pass a validation_data argument,
with two possible types of values: either a different Python generator or a tuple of
Numpy arrays. If the former, then, this will yield validation batches indefinitely. So,
like previously, we must specify the validation_steps argument, which specifies the
number of batches to be drawn for evaluation. Gist 3.4 shows how this can be ac-
complished:
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1 >> history = model.fit_generator(
2 train_generator ,
3 steps_per_epoch =100,
4 epochs =30,
5 validation_data=validation_generator ,
6 validation_steps =50
7 )

GIST 3.4: Fitting the model using a batch generator.

In cases where the number of training images is relatively small, overfitting will be our
number-one concern. We have already discussed a few techniques for dealing with
overfitting, such as dropout and weight decay. In the next section, we will present
a new one called data augmentation, which is inextricably linked to CV tasks and
commonly used in CNN trainings.

3.3.2 Augmentation

The number one reason for overfitting is due to having too few training samples, mak-
ing us unable to build a model that generalizes well on new data. If we had unlimited
data, our model would be exposed to the whole data distribution, and hence, it would
never overfit. Augmentation is based on the idea of generating artificial samples from
existing ones by augmenting the samples through a sequence of random transforma-
tions that result in genuine-looking samples. The goal is that, at training time, our
model will never see the exact same image twice. This helps expose the model to
more aspects of the data distribution, and hence, generalize better.

Keras can make this happen by allowing us to define a series of random transforma-
tions to be performed during training and evaluation. Gist 3.5 shows how this can be
accomplished:

1 >> datagen = ImageDataGenerator(
2 rotation_range =40,
3 width_shift_range =0.2,
4 height_shift_range =0.2,
5 shear_range =0.2,
6 zoom_range =0.2,
7 horizontal_flip=True ,
8 fill_mode=’nearest ’
9 )

GIST 3.5: Augmenting the images using an image generator.

These are some of the many transformations provided by Keras. Let’s briefly look at
them:

• rotation_range: the range (in degrees) within which to randomly rotate images.

• width_shift_range: the range (as a fraction of width) within which to randomly
translate images vertically.

• heighth_shift_range: the range (as a fraction of height) within which to ran-
domly translate images horizontally.

• shear_range: range for randomly shearing transformations.

• zoom_range: range for randomly zooming transformations.
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• horizontal_flip: whether or not to randomly flip inputs horizontally.

• fill_mode: the mode according of which points outside the boundaries of the
input are filled in.

If we train our model with such a configuration, our model will never see the same
image twice. Still, the images will be heavily intercorrelated, as they come from a small
number of original images. Obviously, we cannot produce new information but only
remix the existing one. Therefore, augmentation may not be enough to completely
get rid of overfitting, and as previously mentioned, the only way to fight further is
by using some complementary techniques, including but not limited to, dropout and
weight decay.

3.4 Transfer Learning

There are two different approaches to develop a CV application. The first one is to
train the network from scratch, as described earlier in this chapter. A much faster
approach is to download a network that someone else built and trained (very likely
on a completely different domain and dataset) some time ago and use it as a starting
point to build another network that solves another problem. This approach is called
transfer learning.

Transfer learning is one of the most important techniques in CV these days. In general,
training a NN from scratch requires collecting and labeling a large amount of data.
This is not always feasible for various reasons, including but not limited to time, cost,
and access to new information. Transfer learning allows us to build a more accurate
model, much faster, and with less data.

Over the last few years, several research labs have published their NN models trained
on massive GPUs to achieve state-of-the-art results. All this effort comes to benefit
individual contributors as they can simply download these models, including their
weights, and use them as a starting point to build new NN models. Transfer learning
refers to the knowledge transfer from one domain to another through a pre-trained
network to solve a different problem.

In the remainder of this section, we explain transfer learning in more detail and outline
the reasons why it is important. We also analyze different transfer learning scenarios
and how to use them appropriately. Finally, we present examples of utilizing transfer
learning to solve real-world problems.

Let’s get started.

3.4.1 Importance

As the name suggests, transfer learning is about knowledge transfer from one problem
to another through the use of pre-trained models. It’s a very hot topic in DL at the
moment as it enables us to train deep NNs with relatively little data and in a relatively
short time. The importance of transfer learning comes from the fact that, in most real-
world problems, we usually do not have enough labeled images to train such complex
models (see figure 3.17).
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FIGURE 3.17: Knowledge transfer.

The idea is pretty simple. First, we train a network on a large dataset. During that
process, the network extracts a large number of useful features that can be used to
detect objects in this dataset. Next, we transfer the extracted features to a new network.
Finally, we re-train that network on a new dataset to solve a new problem. Transfer
learning is a great way to shortcut the process of collecting and training a new dataset
by using the weights of other models that were built from publicly available datasets.
The models can then be downloaded and used directly or embedded into new models
for completely different tasks.

Someone may ask why not training the network directly on the new dataset to solve
the problem. To answer this question, we first need to understand the main challenges
transfer learning is trying to solve.

Deep NNs are extremely data-hungry and depend on huge amounts of labeled data
to achieve high accuracy. In practice, very few teams train entire CNNs from scratch.
This happens for two main reasons:

• Data problem: Training a NN from scratch requires many data to get decent
results. It is very common not to have data of sufficient size to solve a problem.
It is also very expensive to acquire and label new data as this usually involves
humans.

• Computation problem: Even if we have plenty of data, it is computationally
expensive to train a NN on massive data as this can take weeks. Also, training a
NN is an iterative process as this usually requires experimentation with different
hyperparameters.

Another benefit of using transfer learning is that of helping the model generalize better
and avoid overfitting. When making ML predictions, the model is faced with condi-
tions that it might have never seen before and doesn’t know how to deal with. The
model is asked to perform well on data not exactly similar to the training one.

For instance, when we deploy a dog classifier, the users use a wide range of cam-
eras, each with its own quality and resolution. Furthermore, images are taken during
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various weather conditions. To train a model on all these different nuances, we ei-
ther have to account for each of these cases by acquiring more images or build a more
robust model that does better at generalizing to new cases. Since it’s not practical to
account for all possible cases that the model will encounter in the future, transfer learn-
ing can help us deal with these novel scenarios. It’s important for the model to go
beyond tasks and domains where labeled data is plentiful. Transferring features ex-
tracted from another network that has seen millions of images will make the model
more robust. We will fully understand this concept when we explain how transfer
learning works in the following sections.

3.4.2 Definition

Now that we understand the problems transfer learning is trying to solve let’s look at a
formal definition. Transfer learning is the transfer of the feature maps that the network
has learned from one task - with a large amount of data - to a new task - where data
is not plentifully available. More specifically, the model is initially trained on a rather
generic dataset (e.g., ImageNet). Then, one or more of its top layers are replaced, and
the model is re-trained on a new dataset not necessarily similar to the original one
(e.g., ImageCLEFmed).

As we discussed previously, in order to train an image classifier that achieves human-
level accuracy, we’ll need massive amounts of data, large computational power, and
plenty of time. As you can imagine, this would be a big obstacle for individual prac-
titioners and small labs. Luckily, researchers around the globe built state-of-the-art
models trained on large datasets, such as ImageNet, COCO, and Open Images, and of-
fered them for free to the general public. That means we should never have to train an
image classifier from scratch again unless we have an exceptionally large dataset and
massive computational power. But, even if this is the case, we might still want to use
transfer learning to fine-tune the pre-trained network on our proprietary dataset.

When we say train the model from scratch, we mean that the model starts with zero
knowledge of the world, and hence the model’s structure and parameters begin as
random guesses. In other words, the weights of the model are initialized randomly,
and hence they need to go through a training process to be optimized.

The intuition behind transfer learning is that if a model is trained on a large and
generic dataset, it will effectively serve as a good representation of the visual world.
We can then leverage the feature maps it has learned by transferring what it learned to
our model and using that as a base starting model for our own task.

Transfer learning starts with a base network, which was trained on a base dataset.
Then, its features are re-purposed to an entirely new network using an entirely new
dataset. This process tends to work exceptionally well as long as the base network
features are as generic as possible and, therefore, not tight to a specific task.

Let’s give a concrete example to better understand how transfer learning is used in
practice. Suppose we want to train a model that classifies dog and cat images. We need
to collect hundreds of thousands of images for each class, label them, and train our
network from scratch. Another option is to do knowledge transfer from a pre-trained
network.

First, we need to find a dataset that has similar characteristics to our task at hand. This
involves searching for open-source datasets. Let’s assume that we choose the ImageNet
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dataset since we already know that it contains many dog and cat images. So, any
network trained on this dataset will be already familiar with both objects. Next, we
need to choose the pre-trained network. There are many state-of-the-art architectures
noways. Let’s assume that we choose the VGG16 network since we already know that
it was trained on the ImageNet dataset.

In order to adapt the VGG16 network to our task, first, we need to download it to-
gether with its pre-trained weights. Next, we need to remove the classifier part and
add a new one that better fits our task. Finally, we need to re-train the network. This is
called using a pre-trained model as a feature extractor. We will discuss the different types
of transfer learning later in this section.

A pre-trained model is a network that has been previously trained on a large dataset,
typically on a large-scale image-classification task. We can either directly use the pre-
trained model as is to run our predictions, or we can use the pre-trained feature ex-
traction part of the network and add a classifier that better fits our task. The classifier
could be one or more densely-connected layers or even a traditional ML algorithm such
as SVM.

Figure 3.18) illustrates an example of applying transfer learning to the VGG16 net-
work. As we can see, first, we freeze the feature extraction part of the network and
remove the classifier part. Then, we append a new classifier by adding a softmax layer
with two hidden units.

Training the new model will be a lot faster than training the network from scratch.
Here, for example, the number of trainable parameters is 50K, whereas the num-
ber of non-trainable parameters is 14M. These non-trainable parameters are already
trained on a large dataset, and thus, we froze them to use the extracted features in our
problem. With this new model, we don’t have to train the entire VGGNet from scratch
because we only have to deal with the newly added softmax layer.

Furthermore, we gain much better performance with transfer learning because the new
model has been trained on millions of images, allowing the network to understand
finer details of the object nuances, which ultimately leads to generalizing better on new,
unseen images.

Now, let’s examine how transfer learning works internally.

3.4.3 Internals

So far, we have learned what transfer learning is and what type of problems it is trying
to solve. In this section, we will see why transfer learning works, what exactly is being
transferred from one task to another, and how a network that is trained on one dataset
can perform well on a different, possible unrelated, dataset.

When we’re training a CNN, the network extracts features from an image in the form
of feature maps. The feature maps are the outputs of each layer in a NN after applying
the weights filter. They are representations of the features that exist in the training
set. They are called like that because they map where a certain kind of feature is
found in the image. CNNs look for features such as straight lines, edges, or even objects.
Whenever they spot these features, they report them to the feature map. Each feature
map is looking for something else (see figure 3.19).
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FIGURE 3.18: Transfer learning and fine-tuning using VGG16.

Recall that NNs iteratively update their weights during the training sequence of feed-
forward and backpropagation. We say that the network has been trained when we go
through a series of training iterations and hyperparameter tunings until the network
yields satisfactory results. When training is complete, we export two main items: 1)
the network architecture and 2) the trained weights. So, when we use a pre-trained net-
work, we essentially download both the architecture as well as the weights.
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FIGURE 3.19: Stacking and chaining feature maps.

During training, the model learns only the features that exist in the training dataset.
But when we download large models trained on a vast amount of data, the accompa-
nying features are now available for us to use. This is extremely important because
these pre-trained models have identified features that aren’t part of our small dataset,
ultimately leading to the build of more a robust model for our task.

In vision tasks, there’s so much stuff for NNs to learn about the training data. For
example, there are low-level features like edges, corners, round shapes, curvy shapes,
and blobs. Also, there are mid-level and higher-level features like eyes, circles, squares,
and wheels. There are so many details in the images that CNNs can pick up on. But if
we have only 1K or even 25K images in our training data, this may not be enough for
our model to learn all those things. By utilizing a pre-trained network that someone
else built, we literally embed all this knowledge into our NN to give it a big boost,
both in terms of performance and speed.

The NN learns the features step-by-step in an increasing level of complexity layer-
after-layer. These are called feature maps. The deeper we go through the network
layers, the more image-specific features are learned. See figure 3.20 for an illustration.

First, the top layer detects low-level features such as curves and edges. Then, the
first layer’s output becomes the input to the second layer, which produces higher-
level features such as squares and semi-circles. The next layer assembles the output
of the previous layer into parts of familiar objects. Finally, a subsequent layer detects
the objects. As we go through more layers, the network yields an activation map
representing more and more complex features. The deeper we go into the network, the
more responsive to a larger region of the pixel space the filters become. Higher-level
layers amplify aspects of the received inputs that are important for discrimination and
suppress irrelevant variations.

Consider the example of figure 3.20 again. Suppose that we are building a model
that detects human faces. We notice that the network learns low-level features like
lines, edges, and blobs in the first layer. These low-level features appear not to be
specific to a particular dataset or task but rather generic. The mid-level layers then
assemble those lines together to recognize shapes, corners, and circles. We notice that
the extracted features start getting a little more specific to our task. So we see that the
mid-level features contain combinations of shapes that form objects in the human face
like eyes and nose. As we go deeper through the network, we notice that the features
transition from generic to specific, and, by the last layer of the network, they form
high-level features that are very specific to our task. So we start seeing parts of human
faces that distinguish one person from another.

Let’s take this concept and compare the feature maps extracted from four different
models that were trained to classify faces, cars, elephants, and chairs (see figure 3.21).
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FIGURE 3.20: Complexity of feature maps increases as we go deeper.

FIGURE 3.21: Comparison of feature maps extracted from four models.

Notice that the features of the earlier layers are very similar for all models. They rep-
resent low-level features like edges, lines, and blobs. This means that models that
are trained on one task capture similar relations in the data type in the earlier lay-
ers of the network and can be easily re-used for different problems in other domains.
The deeper we go into the network, the more specific the features become, until the
network overfits its training data, and eventually becomes harder to generalize to dif-
ferent tasks. The lower level features are almost always transferable from one task to
another because they contain generic information like the structure and the nature of
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how images look. Transferring information like lines, dots, curves, and small parts of
the objects is very valuable for the network to learn faster and with less data on the
new task.

The transferability of features that are extracted at later layers depends on the similar-
ity between the original and the new datasets. The idea here is that all images have
shapes and edges, so the early layers are usually transferable between different do-
mains. We can only identify differences between objects when we begin to identify
higher-level features such as eyes in faces or wheels in vehicles. Only then can we tell
that this is a face because it has eyes or a vehicle because it has wheels. Based on the
similarity of the source and target domains, we can decide whether to transfer only
the low-level features or all the high-level features or somewhere in between. This is
driven by the observation that the later layers of the network become progressively
more specific to the details of the classes contained in the original dataset.

3.4.4 Approaches

There are three main transfer learning approaches, as follows:

• Using pre-trained network as a classifier.

• Using pre-trained network as a feature extractor.

• Using pre-trained network and fine-tuning it.

Any of these approaches can be effective and efficient toward the development and
training of deep CNNs. It may not be evident from the beginning which of them will
yield the best results for our task; therefore, some experimentation may be required
here. This section explains each of these approaches in more detail and gives examples
of how to proceed with the implementation.

Using pre-trained network as a classifier: The pre-trained model is used directly to
classify new images without making any changes to it or performing any extra train-
ing. We just need to download the network along with its weights and run the pre-
dictions directly on our new data. This approach works well when the new domain is
very similar to the one the pre-trained network was trained on. See figure 3.22) for an
illustration.

In the dog breed classification task, we can simply use the VGG16 network trained on
the ImageNet data to run predictions directly. Because ImageNet already contains many
dog images, a significant portion of the pre-trained network’s representational power
may be dedicated to features specific to differentiating between dog breeds.

It worth pointing out that using a pre-trained network as a classifier doesn’t really
involve any layer freezing or extra training. Instead, we simply take a network that
was previously trained on a similar problem and start using it directly on the new
task.

Using pre-trained network as a feature extractor: Here, we take the VGG16 pre-
trained network, freeze the weights of the first 13 convolutional layers, and replace
the old classifier with a new densely-connected layer that will be trained from scratch.
See figure 3.23 for an illustration.

This approach works well when the new task is similar to the task the pre-trained
network was trained on. Since the ImageNet dataset has many dog and cat images,
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FIGURE 3.22: Using pre-trained network as a classifier.

the feature maps that the network has learned contain many dog and cat features that
are applicable to the new task. This means that we can utilize the high-level features
extracted from the ImageNet dataset into this new task.

This can be achieved by freezing all the pre-trained network layers and training only
the classifier part that we just added. In other words, we only add a new classifier,
which will be trained from scratch, on top of the pre-trained model, to re-purpose the
feature maps learned previously for the new dataset.

We remove the classifier part because it’s close related to the original classification
task, and consequently, to the set of classes the model was trained on. For example,
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FIGURE 3.23: Using pre-trained network as a feature extractor.

ImageNet has 1K classes, and hence, the classifier has been trained to overfit the train-
ing data into these 1K classes only. However, in the dog vs. cat task, we only have two
classes. So it’s a lot more effective and efficient to train a new classifier from scratch to
overfit these two classes only.

Using pre-trained network and fine-tuning it: The first two approaches are useful
when the target domain is relatively similar to the source domain. However, what if
this is not the case? Can we still take advantage of transfer learning? The answer
is, of course, yes! Transfer learning works excellent even when the source and target
domains are entirely different. We simply need to extract the right feature maps from
the source domain and optimize them to fit the target domain.

A better definition of fine-tuning is freezing some of the network layers used for fea-
ture extraction and simultaneously training both the non-frozen and the newly added
classifier layers of the pre-trained model. In other words, while we re-train the feature
extraction layers, we also fine-tune the higher-order feature representations to make
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them more relevant for the new task. See figure 3.24 for an illustration.

FIGURE 3.24: Using pre-trained network but fine-tuning it.

3.4.5 Conclusion

Figure 3.25 illustrates the different knowledge transfer approaches from pre-trained
networks. If we download the entire pre-trained network and just run predictions on
it, then we use it as a classifier. If we freeze the convolutional layers only, then we use it
as a feature extractor. Finally, if we freeze a few layers and jointly train both non-frozen
and newly-added layers, then we fine-tunning it. The big question now is: up to which
feature map should we freeze the network? To answer this question, let’s first recall
how fine-tuning works.
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FIGURE 3.25: Fine-tuning approaches.

As we discussed earlier, feature maps that are extracted early in the network are
generic; however, as we go deeper into the network, feature maps are getting more
specific. So, depending on the similarity between the source and the target domains, we
may decide to freeze the network earlier rather than later (or vise versa). For example:

• If the domains are very similar, we might decide to freeze up to the 4th feature
map.

• If the domains are very different, we might decide to freeze up to the 1st feature
map, then re-train all remaining layers.

Between these two options, there is a wide range of options that we can apply. Find-
ing the right fine-tuning level is more an art than a science; however, there are some
guidelines to help us make a choice more intuitively. The decision is a function of
two factors: 1) the amount of data that we have and 2) the level of similarity between the
source and the target domain. We will explain these two factors in more detail in a bit;
however, before that, let’s discuss why fine-tuning is always better than training from
scrats.

When we train a network from scratch, we normally initialize its weights randomly.
As a result, there is no guarantee that they will get values close to the optimal ones.
And if they are far away from the optimal ones, the optimizer will take a long time
to converge. This is when fine-tuning can prove extremely useful. The weights of
the pre-trained network have already been optimized based on some general-purpose
data. Thus, when we use this network in our problem, we start with the weights it
ended with. This makes the network converge much faster than if it had to randomly
initialize the weights. So, even if we decide to re-train the entire pre-trained network,
starting with the optimized weights will converge faster than training the network
from scratch with randomly initialized weights.

Recall that early convolutional layers extract generic features, then they get more spe-
cific to the training data the deeper we go through the network. With that said, a
granular level of detail from a pre-trained model can be chosen for feature extraction.
For example, if the new task is entirely different from the one that the model was
trained originally (e.g., ImageNet vs. ImageCLEFmed), then, perhaps, the output of
the pre-trained model after the first few layers would suffice. But if the new task is
quite similar to the original one, then the output from layers much deeper in the model
can be used.
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Now, let’s go back to the important factors. As we mentioned before, choosing the
appropriate level of transfer learning is a function of two important factors:

• Dataset size: When the target dataset is small, the network will tend to overfit
the new data. In this case, we will most likely want to do less fine-tuning and
rely more on the source dataset.

• Domain similarity: If we want to classify cars vs. boats, ImageNet will suffice
as it contains many such images. However, if we want to classify breast cancer
images, this is an entirely different domain, and thus, it will most likely require
a lot of fine-tuning.

These two factors result in the following four scenarios:

• Target is small and similar to the source.

• Target is large and similar to the source.

• Target is small and different from the source.

• Target is large and different from the source.

Let’s discuss two of these scenarios a bit more to understand their main characteristics
for navigating our options.

Target is small and different from the source: Since the data is different, it might
not be best to freeze the higher-level features of the pre-trained network, because they
contain more data-specific features. Instead, it would work better to re-train layers
from somewhere earlier in the network. However, since our data is small, fine-tuning
the entire network might not be a good idea, because doing so will make it prone to
overfitting. A mid-way solution would work better in this case, e.g., freeze approx-
imately the first third or half of the pre-trained network. After all, the early layers
contain very generic feature maps that would be useful for our data, even if it’s very
different.

Target is large and different from the source: Since the new data is large, we might be
tempted to just train the entire network from scratch and not use transfer learning at
all. However, in practice, it’s often still very beneficial to initialize weights from a pre-
trained model, as we discussed earlier. Doing so makes the model converge faster.
In this case, data is large, and thus, it provides us with the confidence to fine-tune
through the entire network without having to worry about overfitting.

Previously in this section, we learned about the two main factors that help us deter-
mine which transfer learning approach to use, i.e., the size of the target dataset and the
similarity between the source and the target domains. These two factors result in four
scenarios as described in table 3.1.

Target Data Domain Difference Transfer Learning Approach

Small Very Similar Use pre-trained network as feature extractor
Large Very Similar Fine-tune last one third of the network
Small Very Different Fine-tune last two thirds of the network
Large Very Different Fine-tune through the entire network

TABLE 3.1: Fine-tuning summary.



56 Chapter 3. Deep Learning in Computer Vision

Finally, figure 3.26 illustrates the guidelines for the appropriate fine-tuning level to
use in each of these four scenarios.

FIGURE 3.26: Fine-tuning guidelines.
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Chapter 4

ImageCLEFmed Concept Detection
Task

4.1 Task Description

The first step towards the understanding of medical images, such as X-rays, CTs, MRIs,
Ultrasounds, PETs, etc., is to identify potential abnormalities on them. Clearly, this is
the job of multi-label classification where, given a medical image, we identify all rele-
vant medical terms in it (see figure 4.1). These terms represent keywords from a large
and continuously growing corpus of medical terms.

FIGURE 4.1: Sample image and labels from ImageCLEFmed 2019.

In this chapter, we address the problem of multi-label classification to decide the pres-
ence (or absence) of medical terms in medical images. We do so through a non-official
participation in the last four editions of the Concept Detection task within the Image-
CLEFmed campaign (Eickhoff et al., 2017; Herrera et al., 2018; Pelka et al., 2019). That
means that, although our system outperformed all previous winners, our participation
cannot be considered valid since it occurred after the ground truth datasets had been re-
leased to the general public. We can think of this effort as some sort of ex-post analysis
task.

Having that in mind, in the following sections, we will talk about the main aspects of
our system, and we will present how it performed on the numerous configurations we
tried out along the way. Let’s get started!
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4.2 Exploratory Analysis

There are a few datasets available nowadays to play around with if we are into medical
imaging and multi-label classification. Let’s briefly talk about the four most recent
ones from the ImageCLEFmed campaign. According to tables 4.1 and 4.2, it’s pretty
obvious that as we go back in time the datasets become more diverse and hence more
noisy. That means we deal with a bigger number of images and a wider range of
concepts. As a result, as we go back, we expect it will be harder for a DL algorithm to
build an accurate model.

If we look carefully at the winners of each year, it will become evident that our initial
assumption was indeed valid 4.3. In other words, as we go from 2017 to 2020, the
winning teams managed to build more robust models, primarily because the dataset
was less noisy compared to the ones from the previous years, and secondarily because
of the recent advancements in DL.

year dataset column total unique

2017 train concept 27533 20812
2017 train images 976504 167748
2017 test concept 6453 6453
2017 test images 54133 9607
2018 train concept 111156 111156
2018 train images 6652982 222305
2018 test concept 35878 35878
2018 test images 323012 9938
2019 train concept 8449 5528
2019 train images 432753 70786
2019 test concept 2456 2456
2019 test images 64071 10000
2020 train concept 6094 3047
2020 train images 907718 80723
2020 test concept
2020 test images

TABLE 4.1: Simple statistics on the number of images per concept.

The other thing worth mentioning here is illustrated in figures 4.2 and 4.3. What these
two figures show is that not all labels were born equal! That means that some labels
are associated with way too many images whereas others are extremely rare; i.e., they
are associated with one or two images at most. This property is important because it
allows us to achieve the same accuracy as if we had considered all labels whatsoever
by choosing only a subset of them. In other words, by doing so, we can significantly
speed-up the training process and eliminate the noise while maintaining most of the
original information. In fact, this is exactly what we did in our experiments; hence,
we had the opportunity to prove it firsthand.
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year dataset column total unique

2017 train image 167748 167748
2017 train concepts 976504 20812
2017 test image 9607 9607
2017 test concepts 54133 6453
2018 train image 222305 222305
2018 train concepts 6652982 111156
2018 test image 9938 9938
2018 test concepts 323012 35878
2019 train image 70786 70786
2019 train concepts 432753 5528
2019 test image 10000 10000
2019 test concepts 64071 2456
2020 train image 80723 80723
2020 train concepts 907718 3047
2020 test image
2020 test concepts

TABLE 4.2: Simple statistics on the number of concepts per image.

year team score

2017 Aegean AI Lab 0.1583
2018 UA PT Bioinformatics 0.1108
2019 AUEB NLP Group 0.2823
2020 AUEB NLP Group 0.3940

TABLE 4.3: Winning teams from previous campaigns.

FIGURE 4.2: Distribution of images from ImageCLEFmed 2019.
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FIGURE 4.3: Distribution of concepts from ImageCLEFmed 2019.

4.3 Related Work

DL techniques are broadly used for image classification tasks in the healthcare sector.
Most often, pre-trained CNNs on the ImageNet image database (Deng et al., 2009) are
used as image encoders followed by a FFNN that serves as image classifier (Esteva
et al., 2017; Rajpurkar et al., 2017; Rajpurkar et al., 2018). However, ImageNet con-
sists of just stock images from everyday life, and thus it differs significantly from a
very specialized repository of medical images. As a result, a common practice among
scientists is to fine-tune the pre-trained model to achieve better results. For example,
(Esteva et al., 2017) fine-tuned the InceptionV3 model to classify skin lesions into ma-
lignant or benign, scoring results close to the ones predicted by dermatologists. This
breakthough revealed that pre-trained models could indeed be used in medical imag-
ing tasks when fine-tuned, despite the chaotic differences between general-purpose and
special-purpose images.

Similarly, CheXNet (Rajpurkar et al., 2017) followed a DL approach to classify X-rays
of the ChestXray14 dataset (Wang et al., 2017) to fourteen labels of thoracic diseases.
Also, (Rajpurkar et al., 2017) used the DenseNet-121 pre-trained model (Huang et al.,
2017) to encode images, adding a FFNN to assign one or more of the fourteen classes
to each image. The authors evaluated the predicted results with the F1 score and
reported state-of-the-art results. In a later work, (Rajpurkar et al., 2018) presented
CheXNeXt, which consisted of an ensemble of ten networks with the same architecture
as CheXNet. First, an ensemble from multiple CheXNet networks was used to re-label
the ChestX-ray dataset to correct its false labels. Then, the networks were re-trained,
now on the re-labeled data, and an ensemble of the ten best was used for the final
predictions.

As we discussed already, the Concept Detection tasks of the ImageCLEFmed campaign
aim to detect abnormalities in medical images. Most of the participated teams in re-
cent years (Eickhoff et al., 2017; Herrera et al., 2018; Pelka et al., 2019) employed some
type of DL system. In 2017, the top system from the same lab (Katsios and Kaval-
lieratou, 2017) outperformed all the other methods. In 2018, the winning team (Pinho
and Costa, 2018) used an Adversarial Autoencoder for unsupervised feature learning,
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whereas the second team (Wang et al., 2018) used a multi-label classification method
based on the InceptionV3 pre-trained model. In 2019, the winning system (Kougia,
Pavlopoulos, and Androutsopoulos, 2019) also followed a DL approach.

4.4 Proposed System

The proposed system is based on the work of (Katsios and Kavallieratou, 2017), yet
with many improvements in various areas. Figure 4.4 illustrates the VGG16 pre-
trained model after adding a FFNN at the end.

FIGURE 4.4: VGG16 model with appended FFNN.

Other than that, the proposed system follows the standard workflow of ML projects
(see figure 4.5).

Now, let’s briefly discuss the improvements of our system over the one that won the
2017 edition of the ImageCLEFmed campaign. Firstly, instead of using all labels, we
only used the top-N, where N is chosen so that the 90% of the total information (i.e.
the number of image-label pairs) is considered during training. Secondly, instead of
a single pre-trained model and a fixed set of hyper-parameters, we applied several
models (e.g., Xception and InceptionV3, etc.) and hyper-parameters (e.g., loss functions,
optimizers, learning rates, batch sizes, epochs, etc.) through an exhaustive grid-search.
Needless to say that the execution time of our experiments increased exponentially as
a result of the exhaustive grid-search.

However, the single most important improvement was the selection of an alternative
loss function. So, instead of the classic Binary Crossentropy loss, we choose the Sigmoid
Focal Cross Entropy loss, which is more appropriate when dealing with extremely im-
balanced classes.
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FIGURE 4.5: Workflow of a machine learning project.

Moreover, we down- or up-scaled the training images according to the maximum al-
lowed size of the corresponding pre-trained model, and, last but not least, we per-
formed image augmentation on the training data according to gist 4.1.

1 >> from keras.preprocessing.image import ImageDataGenerator
2

3 >> generator = ImageDataGenerator(
4 rescale =1. / 255,
5 rotation_range =40,
6 width_shift_range =0.2,
7 height_shift_range =0.2,
8 shear_range =0.2,
9 zoom_range =0.2,

10 horizontal_flip=True ,
11 fill_mode="nearest",
12 )

GIST 4.1: Image augmentation logic.

Figure 4.6 lists four random images from the 2019 dataset, whereas figure 4.7 lists four
augmented images of the same reference image, again, from the same dataset.

4.5 Experimental Results

The evaluation of the different models was conducted, first by computing the F1 score
on each image of the testing set (see figure 4.8), and then by calculating the average
value.

As already mentioned before, the testing set, a.k.a. ground truth, was already avail-
able to us from the begining. For the validation set, we randomly selected 20% of the
training images. Recall that the latter is being used for hyper-parameter tuning and
early stopping whereas the former to evaluate how good our model generalizes to new,
unknown data.

Table 4.4 shows the F1 scores achieved by our models on all four datasets. Clearly,
the proposed system outperformed all past winners by a small margin. Lastly, for com-
pleteness sake, figures 4.9 and 4.10 illustrate the history and performance of a single
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FIGURE 4.6: Random images from ImageCLEFmed 2019.

FIGURE 4.7: Augmented images from ImageCLEFmed 2019.

FIGURE 4.8: Model evaluation with F1 score.

experiment (out of many conducted as part of our study) during training, validation,
and testing phases.
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FIGURE 4.9: History of batch=16 | year=2019 | model=VGG16.

FIGURE 4.10: Performance of batch=16 | year=2019 | model=VGG16.
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batch model score year

16 Xception 0.1521 2017
16 VGG16 0.1592 2017
16 ResNet50 0.0569 2017
16 InceptionV3 0.1351 2017
32 Xception 0.1488 2017
32 VGG16 0.1600 2017
32 ResNet50 0.0000 2017
32 InceptionV3 0.1384 2017
64 Xception 0.1521 2017
64 VGG16 0.1572 2017
64 ResNet50 0.0439 2017
64 InceptionV3 0.1447 2017
16 Xception 0.1076 2018
16 VGG16 0.1126 2018
16 ResNet50 0.0402 2018
16 InceptionV3 0.0956 2018
32 Xception 0.1053 2018
32 VGG16 0.1132 2018
32 ResNet50 0.0000 2018
32 InceptionV3 0.0979 2018
64 Xception 0.1076 2018
64 VGG16 0.1112 2018
64 ResNet50 0.0311 2018
64 InceptionV3 0.1024 2018
16 Xception 0.2772 2019
16 VGG16 0.2902 2019
16 ResNet50 0.1037 2019
16 InceptionV3 0.2464 2019
32 Xception 0.2712 2019
32 VGG16 0.2916 2019
32 ResNet50 0.0000 2019
32 InceptionV3 0.2523 2019
64 Xception 0.2772 2019
64 VGG16 0.2866 2019
64 ResNet50 0.0801 2019
64 InceptionV3 0.2639 2019

TABLE 4.4: Performance summary on the test sets.
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Chapter 5

Conclusion

5.1 Wrap Up

In this thesis, we addressed the Concept Detection task, which aims to assist physicians
during the examination of medical images, such as X-rays, CTs, MRIs, Ultrasounds,
PETs, etc. A variety of pre-trained models, hyper-parameter values, and multimodal
datasets were involved. More specifically, the datasets were downloaded from the
last four years of the ImageCLEFmed campaign. The models were pre-trained based
on the ImageNet image database and fetched through the Keras API. Lastly, the hyper-
parameter grid-search consisted of loss functions, optimizers, learning rates, batch sizes,
epochs, etc. The proposed system achieved marginally higher performance than the
winning team in all four campaigns, based on the corresponding ground truth datasets.

5.2 Up Next

In future work, we will put more effort into understanding, cleaning, normalizing,
and preparing the input data. We also plan to test more complex pre-trained models
with a larger number of parameters. Moreover, we will add new hyper-parameters
to the grid in addition to optimizing the range of their values. Last but not least, we
will experiment with more sophisticated loss functions and optimizers for multi-label
datasets, which are more robust against extremely-sparsed labels and highly-imbalanced
classes.
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Appendix A

Setup Working Environment

Before we start developing a DL application, it’s required that we setup a proper work-
ing environment. Moreover, it’s strongly recommended, although not strictly neces-
sary, our application takes advantage of a fast GPU. Applications, such as image pro-
cessing with CNNs, are extremely slow on CPUs, even fast ones with multiple cores
and threads. But even for applications that can realistically run on CPUs, we can see a
significant speed-up by the use of a modern GPU. Thankfully, even if we don’t own a
workstation or we can’t install a GPU on it, we can run our code on a leased AWS EC2
instance. Keep in mind, however, this option can become extremely expensive over
time in case of extensive use.

Regardless of whether we will choose to run it locally or remotely, it’s strongly rec-
ommended that we use a Linux distribution such as Ubuntu 18.04. Moreover, we will
need to install Python 3.7 programming language - if not already installed - as well as
Keras 2.2.5 and TensorFlow 2.1.1 packages. If not familiar with open source DL tools yet,
Keras is TensorFlow’s high-level API for building and training DL models. It’s an ideal
tool for fast prototyping, state-of-the-art research, and at the same time, production
deployments.

Firstly, we can use two different modes to develop a DL application; standalone or
interactive. Both of them are described below.

For standalone development, most people use an IDE, such as PyCharm. This ad-
vanced tool can also assist developers during debugging and troubleshooting. On
the other hand, for interactive development, the common practice is to use Jupyter.
Jupyter is widely used in the data science community. It’s a great way to experiment,
do research, and share what we’re working on. Jupyter stores its source code in a
JSON-like file, which can be edited easily in a browser. It combines the ability to run
Python code with text-rich capabilities for annotating what is being done. It also allows
data scientists to break long experiments into smaller chunks that can be executed in-
dependently. This type of development is called interactive, which essentially means
we don’t have to re-run all our code from the beginning in case something goes wrong
at a later stage in our experiment.

Secondly, there are two different ways to execute a DL application; local (i.e., in a
workstation) and remote (i.e., on the Cloud). Both of them are described below.

If we don’t own a high-end GPU already, running DL experiments on the Cloud is a
dead-simple, low-cost way to get started without having to buy any expensive device.
But if we are heavy DL users, this setup isn’t sustainable in the long run (for more than
a month, say). That’s because GPU instances on EC2 can become very, very expensive
under extensive use. Meanwhile, a second-hand, professional-grade GPU, such as
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Nvidia Tesla K80, costs just above $500 on eBay (as of May 2020) with an original price
tag of $5,000. In other words, Cloud is a great way to get start, however, in the long
run, a dedicated workstation will turn out to be more affordable.

In the following two sections, we will show how to prepare our environment (PyCharm
vs. Jupyter) as well as how to execute our application (workstation vs. Cloud).

A.1 Setup Local Workstation

The process of setting up a local workstation for application development and model
training is fairly easy and consists of the following steps:

• Verify OS type.

• Verify Python version.

• System update and upgrade.

• Install BLAS interface.

• Install auxiliary Python libraries.

• Create Python environment and install packages.

• Install and start the PyCharm IDE.

• Install and start the Jupyter Server.

Before we start, we presume that our OS is based on Ubuntu 18.04, as well as that
Python 3.7 is available on the host machine. If unsure, we can easily verify that by
running gists A.1 and A.2.

1 #!/bin/bash
2 $ uname -a

GIST A.1: Verify OS type.

1 #!/bin/bash
2 $ python3 .7 --version

GIST A.2: Verify Python version.

The next step is to update as well as upgrade our system using gist A.3.

1 #!/bin/bash
2 $ sudo apt -get update
3 $ sudo apt -get upgrade

GIST A.3: System update and upgrade.

It’s also essential that we install the BLAS interface. This will speed-up tensor opera-
tions on CPUs. See gist A.4 on how to accomplish that.

1 #!/bin/bash
2 $ sudo apt -get install \
3 build -essential cmake pkg -config \
4 libopenblas -dev liblapack -dev

GIST A.4: Install BLAS interface.
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Another requirement is to install a few auxiliary Python libraries, including HDF5,
which will allow us to save large NN files to disk, and Graphviz, which will enable us
to visualize NN architectures. We can do so by running gist A.5 from our terminal.

1 #!/bin/bash
2 $ sudo apt -get install \
3 python -pip python -dev python -virtualenv \
4 libhdf5 -serial -dev python -h5py \
5 graphviz

GIST A.5: Install auxiliary Python libraries.

We are now ready to create a project-specific Python environment as well as to install
all required packages. Note that, it’s always recommended to create a separate Python
environment for every new project so to avoid modifying system’s default one. We
can do so simply by running gist A.6 from our terminal.

1 #!/bin/bash
2

3 # remove old environment.
4 $ rm -rf env
5

6 # initialize new environment.
7 $ python3 .7 -m venv env
8

9 # activate the environment.
10 $ source env/bin/activate
11

12 # install required installers.
13 $ pip install --upgrade pip setuptools
14

15 # install packages for Viz , CV, ML , DL, etc.
16 $ pip install \
17 matplotlib ==3.1.3 seaborn ==0.10.0 pydot ==1.4.1 \
18 numpy ==1.18.1 scipy ==1.4.1 pandas ==1.0.1 \
19 scikit -learn ==0.22.1 \
20 tensorflow -cpu ==2.1.1 keras ==2.2.5 tensorflow -addons ==0.10.0 \
21 pillow ==7.0.0 opencv -python ==4.2.0.32 scikit -image ==0.16.2 \
22 jupyter ==1.0.0 jupyterthemes ==0.20.0

GIST A.6: Create Python environment and install packages.

The final step is, of course, to install PyCharm. We can do so by running gist A.7 from
our terminal.

1 #!/bin/bash
2 $ wget https :// jetbrains.com/python/pycharm -community -2020.1.1. tar.gz
3 $ tar -xzf pycharm -community -2020.1.1. tar.gz
4 $ rm pycharm -community -2020.1.1. tar.gz
5 $ cd pycharm -community -2020.1.1/ bin/
6 $ bash pycharm.sh

GIST A.7: Install and start the PyCharm IDE.

If everything was done right up to here, we should be able to see something similar to
figure A.1; the PyCharm, fully loaded with the project’s source code.

Starting Jupyter is a slightly different story. Firstly, we don’t have to install anything
additional. If we look closely, we have already done this as part of a previous step.
Secondly, the way to start Jupyter is simply by running gist A.8 from our terminal.

1 #!/bin/bash
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FIGURE A.1: The PyCharm IDE.

2 $ source env/bin/activate
3 $ rm -rf /home/$USER/. local/share/jupyter/
4 $ jupyter notebook

GIST A.8: Install and start the Jupyter Server.

Once the service is up and running, we should be able to see something similar to
figure A.2 in our terminal. We simply click on the second URL and Jupyter will open
up in our browser automatically.

FIGURE A.2: The local Jupyter Server’s address.

If everything was done right up to here, we should be able to see something similar to
figure A.3; the Jupyter, fully loaded with the project’s source code.

When we are done with our work on Jupyter, we can simply go on and close the
browser tab, get back to the terminal and hit CTRL + C to stop the service, and fi-
nally type in deactivate to exit the Python environment.

We’re all set! We can now start building DL applications in the local workstation!
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FIGURE A.3: The local Jupyter Notebook.

A.2 Setup Remote Instance

In this section, we will setup a GPU instance on AWS EC2. As pointed out earlier,
many DL applications are so much computationally intensive that can take hours,
days, or even weeks to finish with CPUs. However, running them on top of GPUs can
speed up the process orders of magnitude.

Here, we will use a p2.xlarge instance from US West (Oregon) region, with a CPU of 4
cores, a RAM of 61 GiB, and a GPU of 11 GiB. Under the hood, the p2.xlarge instance
utilizes one (out of two available) Tesla K80 GPU from Nvidia. The hourly cost for this
instance is about $0.90, without considering costs for storage, inbound and outbound
traffic, etc.

In our case, we were fortunate enough to receive a grant of $5,000 from AWS Cloud
Credits for Research program. Obviously, without the AWS support (figure A.4), these
resource-intensive experiments would never be possible.

For completeness sake, here is a copy of the acceptance letter:

“Congratulations! Your application for the AWS Cloud Credits for Research program
was successful! You have been awarded 5K in AWS credits for your project.”

Now, let’s move on with the instance setup. The whole process will take roughly about
10 minutes to complete or less.



74 Appendix A. Setup Working Environment

FIGURE A.4: The AWS Cloud Credits for Research logo.

First of all, if not done already, we must create an account. We need to choose a support
plan (the basic one will suffice) and provide the credit card information (no charges
will be applied yet).

Next, we have to launch the EC2 instance. Go to the EC2 Management Console and click
on Launch Instance (figure A.5).

FIGURE A.5: The AWS Management Console interface.

Next, click on AWS Marketplace from the left-hand side, search for Deep Learning
AMI (Ubuntu 18.04) Version 28.1, and hit Select. The selected AMI contains all the
drivers, binaries, and files needed to train on a GPU instance (figure A.6).

In the next page we have to choose an instance type. First, we filter by GPU Instances
only. Next, we select the p2.xlarge type and we click Next (figure A.7).
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FIGURE A.6: Choose an AMI.

FIGURE A.7: Choose an instance type.

Skip the next three tabs, namely, Configure Instance, Add Storage, and Add Tags,
and head toward the Configure Security Group tab to setup a few security rules ac-
cordingly (figure A.8).

Note that if we allow Anywhere for a port, then, literally, anyone will be able to listen
to that port of our instance. If at all possible, we should consider restricting access to
a specific IP address only. But if our IP changes constantly, then, this is not a viable
choice. If we are going to leave access open to any IP, then, at least, we should be
cautious to not store sensitive data to our instance.
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FIGURE A.8: Configure the security group.

Finally, we should click on Review and Launch to actually launch the instance. We’ll
need to specify an authentication key pair to be able to access the instance via SSH later
on (figure A.9).

FIGURE A.9: Select a key pair.

We click Review and Launch once more, and we’re done! Note that, from this point
on, AWS will charge us for running the instance. So, we should always remember to
stop the instance when we are not using it, otherwise, the instance will keep running
and we’ll wind up with a hefty bill! AWS charges primarily for running instances, so
most of the charges will cease once we stop the instance. However, there are smaller
storage charges that continue to accumulate until we terminate the instance.

Allow a minute (or two) for the instance to launch. We will know that it’s ready for
use when the Status Checks indicates that all checks have passed. Now let’s switch
to the Description tab on the EC2 dashboard and make a note of the IPv4 Public IP
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address. We will need this info during next step in order to access the instance via
SSH (figure A.10).

FIGURE A.10: List of currently running instances.

Next, go to the terminal and connect to the EC2 instance via SSH. But first, navigate
to the location where we have stored the key pair from a previous step and type in the
commands of gist A.9.

1 #!/bin/bash
2 $ chmod 400 imageclefmed.pem && ssh -i imageclefmed.pem ubuntu@52

.12.100.205

GIST A.9: SSH instance.

The final step is to configure and run the Jupyter Notebook Server on EC2. After we have
accessed the remote instance via SSH, we need to follow the steps of figure A.11.

FIGURE A.11: Configure and start the remote Jupyter Server.

Then, we should open a second shell in the host machine and type in the commands
of gist A.10, the purpose of which is to forward the local port 8888 to port 8888 in the
remote instance.
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1 #!/bin/bash
2 $ ssh -i imageclefmed.pem -N -f -L 8888: localhost :8888 ubuntu@52

.12.100.205

GIST A.10: Port forwarding.

Finally, we open a browser and we navigate to the local address we are forwarding to
the remote notebook process (i.e., http://127.0.0.1:8888/). There we will see a security
warning due to the fact that the SSL certificate we generated earlier is not verified by
a trusted organization. Except that, we created that certificate on our behalf and so
it is for sure trusted. Therefore, we can simply click on Advanced and then again on
Proceed as illustrated in figures A.12 and A.13.

FIGURE A.12: Invalid certificate.

FIGURE A.13: Accept certificate.

At this point, we should have been prompted to enter the Jupyter password. So, let’s
type it in and click Log In to access the notebook dashboard as illustrated in figure
A.14.
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FIGURE A.14: Enter password.

If everything was done right up to here, we should be able to see something similar to
figure A.15; the Jupyter.

FIGURE A.15: The remote Jupyter Notebook.

We’re all set! We can now start building DL applications in the remote instance!
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