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Summary: In image processing a basic step in order to extract useful information 

is the binarization of the image. Most binarization algorithms take a number of 

parameters that affect the output of the process. Finding the best settings of a 

binarization algorithm is time consuming and requires a lot of effort especially when 

an algorithm depends on many parameters thus the search space is big. To address 

this issue it is essential to develop a system that finds these parameters that are as 

close as possible to the best parameters for a given case within an acceptable time 

frame without having to run through the entire search space. 

This thesis aims at developing such a system that allows the user to find the 

closest to the best settings of a binarization algorithm either automatically using 

simulated annealing or interactively using a user feedback framework that enables 

the user to evaluate the results of image binarization. This system incorporates three 

sample algorithms but it is also expandable allowing for the integration of user 

developed algorithms.    

Keywords: image binarization, simulated annealing, parameters, automatic, 

feedback. 
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1. Introduction 

 
1.1 Image Binarization Problem 

 

Document image binarization primarily concerns the processing of historical 

documents that contain important information about a person, place or event in the 

past. The preservation and publishing of historical documents is of utmost 

importance. Due to the fact that the storage of digital versions of the documents 

needs huge storage space in order to preserve the properties of the original image, it 

is not easy to distribute it through the internet. One solution is to convert the image 

into a bi-level or binary image by finding and applying a threshold on the pixels of 

the image. The pixels then are classified into two classes; foreground and 

background. Foreground refers to pixels that belong to useful information such as 

text, images and tables and correspond to the ink of the original document and is 

represented in black. Background refers to the paper or other material of the original 

image and is represented in white. Image binarization is the initial step of most 

document image analysis and processing in order to subsequently obtain useful 

information with other methods such as Optical Character Recognition (OCR) or 

simply convert the document to a more appealing form without problems caused by 

several degradation issues such as smear, strain, non-uniform illumination, shadows, 

bleed-through (when the ink transposes from one side of the paper to the other 

side) etc. The better the document is processed during this phase, the easier it is to 

process it in subsequent phases and the more useful information can be 

automatically extracted.   

There are two approaches as far as document binarization is concerned; local 

and global. The easiest approach is to apply a global threshold on the document and 

decide upon this threshold. While this approach is good and adequate for 

documents with good illumination and contrast, the aforementioned degradation 

issues can severely affect its performance. In this case the threshold needs to be 

decided and applied locally. In order to achieve this, the document is segmented 

using various methods like sliding or fixed windows or by roughly estimating the 



             Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization  

                                   Algorithms” 

foreground and the background areas. Then the threshold is calculated within these 

areas based on local features. Moreover, there are approaches like [1] that combine 

global and local methods to achieve a better performance. The effect of a local 

binarization versus a global approach is shown in Figure 1.  

(a) 

(b) 

(c) 

Figure 1. (a) Original Image, (b) Global binarization and (c) Local with W=140  
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For this demonstration a new algorithm described later in this thesis was 

used with a 140X140 pixel window partitioning and a threshold of 85% of the mean 

intensity used globally (case b) or locally in each window (case c). It is clear that local 

binarization helped distinguishing between text and noise around the text and even 

on the top right part of the image.  

Most algorithms have one or more parameters that control the way the 

document is processed and may heavily affect the binarization result. These 

parameters usually control the global or local threshold, the size of the window used 

to scan the document, the amount of the standard deviation of pixel intensity added 

to the average intensity and many others. Typical examples are Niblack’s [2] 

algorithm that uses a sliding window to apply a local threshold based on the mean 

and standard deviation of the pixels’ intensity in the window and [1] that iteratively 

processes the image globally and then based on fixed window segmentation decides 

whether more local processing is required.  

The number of parameters as well as the range of values for each parameter 

defines the search space of the algorithm. This search space can be enormous and 

consequently the time and effort required to search through it could be a limited 

factor towards good binarization performance. Due to the fact that different 

parameters are required for different set of images the performance of an algorithm 

depends not only on its sophisticated design but also on the user’s ability to fine 

tune it in a reasonable time frame.      

1.2 Scope of this thesis 

 

All things considered, this thesis aims at developing a system that drastically 

reduces the time and effort needed to find the appropriate configuration of a 

binarization algorithm that produce if not the best, very close to the best 

binarization results for that specific algorithm and collection of documents. In 

general, the system incorporates a probabilistic method called Simulated Annealing 

that can be used to explore the configuration settings of an algorithm that behave 

well when applied to documents categorized by degradation issues such as smear, 
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stain or low contrast or find the configuration settings that work best in most cases. 

Taking all the above into account, it is obvious that the system is ideal for fine tuning 

algorithms when processing large collections of historical documents where all 

documents contain more or less the same degradation issues. This is true for 

collections of documents were all documents were stored together and digitized 

using the same method (scanner of camera). These documents suffer uniformly from 

the same type and amount of degradation issues. In this case, the algorithm can be 

fine tuned using manually created Ground Truth (GT) documents based on a small 

number of representative documents from the collection. An estimation of the 

number of documents required is given in §6.3. The GT documents can be created 

based on the user’s personal preference on the quality of the resulting image. The 

user for example could opt for a document with thicker strokes. The algorithm then 

is tuned to adapt to the desired GT document and thus the whole collection is 

processed in the same manner. 

Another use of the system could be to explore the default settings of an 

algorithm that is the settings that are more likely to work well under all 

circumstances. This can be achieved by creating a collection of images with their 

respective GT images that suffer from all possible degradation issues. Then the 

settings of the algorithm can be found that produce the best overall performance. 

These settings can then be used as the default setting of that algorithm.     
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2. Related work 

Automatic or semi-automatic tuning of binarization algorithms has been 

given limited attention to date. Badekas and Papamarkos [3] propose a Parameter 

Estimation Algorithm (PEA), which can be used to detect the best values for the 

parameter set of every binarization algorithm. They use edge detection evaluation to 

analyze the correspondence between different binarization results obtained by the 

application of an algorithm to a specific document using different parameters. They 

improve on previous defined techniques [4] by applying an adaptive convergence 

procedure to reduce the parameter’s ranges by estimating the best and second best 

binarization result. To evaluate the results of each binarization, they estimate a 

ground truth image (EGT) selecting it from a list of Potential Ground Truth (PGT) 

images obtained from a technique proposed by Yitzhaky and Peli [4]. These PGT 

images are produced using N images derived from different binarization techniques. 

Every PGTi  (0≤i≤N) is created by taking all the pixels that are classified as foreground 

in at least i images. The rest is background. Then the best PGT image is designated as 

EGT using ROC analysis and Chi-square test. 

 Mohamed Cheriet, Reza Farrahi Moghaddam and Rachid Hedjam [5] 

introduce a framework for the optimization of parametric binarization methods, 

which provides the optimal values for each document image. Numerical feature 

vectors for two-dimensional data are generated based on their maps obtained by 

the use of Stroke Gray Level (SGL) multilevel classifier. They then combine the 

statistics of various maps in a nonlinear way to produce the final feature vector. 

Finally, the optimal behavior is learned using Support Vector Regression (SVR). To 

evaluate the framework they used the grid based Sauvola method and Lu’s method 

against the DIBCO’09 and H- DIBCO’10 datasets for comparison. 

Nicholas R. Howe [6], apart from a new binarization technique, introduces an 

automatic parameter tuning by means of a stability heuristic criterion that helps to 

choose suitable parameter values for individual images. The technique is based on 

the observation that when good parameter values are found, small changes to them 

will give low variability in the binarization result.  However, due to the computational 
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cost of the proposed solution, the author applies the proposed stability criterion only 

to one of the two parameters of the suggested algorithm, restricting the other to 

two possible values. When minimizing the first parameter, small changes to it will 

result to the same behavior as far as minimizing is concerned. This can lead to a 

substantial reduction in the computational cost. Moreover, two distinct values of the 

second parameter, at the edges of its range, are enough to produce most of the data 

required for the optimization. Although the author’s approach works well on the 

proposed algorithm, it heavily depends on the specific behavior and parameters of it, 

making it almost impossible to generalize the approach to other binarization 

techniques. On the positive side, this approach does not depend on nor computes a 

ground truth image. 
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3. The three included algorithms 

The system includes three algorithms; one hybrid global-local thresholding 

and two local thresholding. Fixed Window Local Thresholding (FWLT) is a new 

technique created to demonstrate that even when a simple and naïve approach is 

used, if tuned properly produces satisfactory and comparable binarization results. 

The other two are Niblack’s algorithm [2] and a hybrid binarization technique [1] that 

combines iterative global thresholding with local post-processing. 

3.1 Niblack  

Niblack’s algorithm uses a sliding square window over the image, centered on 

a pixel, and calculates a threshold T for that pixel using the equation: 

𝑇 = 𝑚 +  𝑘 ∗ 𝑠 

where m is the mean intensity value of all the pixels in the window and s is the 

standard deviation. k is a configuration value that along with the window property h 

affects the quality of the produced image. s is denoted as: 

𝑠 = ��
1

ℎ ∗ ℎ − 1
� ∗�(𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑖) −  𝑚)2

ℎ∗ℎ

𝑖=0

 

The window used is calculated around the pixel with a side of 2 ∗ ℎ + 1.  It 

does not use any pre or post-processing on the document. The system uses as initial 

values for k and h, 0.6 and 25 pixels respectively as described in [7]. 

The algorithm’s Achilles' heel is the fact that it cannot cope with large areas 

of background pixels. This is evident in Figure 2. 

(a) 
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(b)

(c) 

(d)

 

(e) 

Figure 2. Niblack Binarization (a) Original Image, (b) k= -1.0 h=15, (c) k=-1.0 h=30 

(d) k=-1.0 h=50 (e) k=-1.0 h=100 

When a pixel is outside a distance of 15, 30, 50 or 100 pixels respectively from foreground 

pixels (text) then the pixel is more likely to be misclassified as the mean and standard 

deviation of the window is calculated using only background pixels. It is obvious that the 

bigger the window is, the more likely it is for a pixel to be within window distance to real 

foreground pixels and consequently the more likely it is to be correctly classified. However, 

the bigger the window it is the slower the algorithm becomes. This problem led [7] to 

introduce an adaptive Niblack that determines the areas where k and h can be applied and 

background areas where all pixels are classified accordingly.      
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3.2 Hybrid Iterative Global Thresholding (H-IGT) 

This approach is done in three steps: 

- Application of Iterative Global Thresholding Algorithm 

- Detection of “Noisy” Areas, and 

- Application of Iterative Global Thresholding Algorithm to the detected 

areas. 

• Application of Iterative Global Thresholding 

This method performs a number of iterations on the image until one of 

two conditions is met. At the beginning of each iteration i the global average pixel 

intensity 𝑇𝑖 is computed. Then the following steps follow: 

 Subtraction of 𝑇𝑖 from each pixel. 

 The grayscale histogram is stretched so that the remaining pixels are 

distributed in all the grey scale tones. 

When either |𝑇𝑖 −  𝑇𝑖−1| < 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 (𝑡𝑐)  or a given number 

of iterations 𝑖 is met the procedure stops and the resulting image is produced by 

turning all non white (1) pixels to black (0). Normally, 𝑡𝑐 will occur before 𝑖 is met. 

Then, 𝑡𝑐 controls the number of iterations over the image. Lower values of 𝑡𝑐 results 

in more iterations applied and hence more pixels classified as background resulting 

in thinner strokes with less noise. The formula used for the subtraction that provides 

the after-subtraction and before-equalization image 𝐼𝑠 is: 

𝐼𝑠(𝑥,𝑦) =  𝐼𝑖(𝑥,𝑦) −  𝑇𝑖 +  1 

The relation used for the histogram stretching is: 

𝐼𝑖+1(𝑥, 𝑦) =  1 −  
1 − 𝐼𝑠(𝑥,𝑦)

1 − 𝐸𝑖
 

where 𝐼𝑠 is given by the previous equation and 𝐸𝑖 is the minimum pixel value 

in the image 𝐼𝑠 during the 𝑖𝑡ℎ repetition, just before the histogram stretching. After 
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every repetition, more pixels move to the background thus creating a cleaner image. 

As suggested in [1], an upper limit of 20 is posed for 𝑖. 

• Noisy area detection 

At this stage the image is divided into segments (𝑆), of fixed size 𝑛 ∗ 𝑛. In 

each segment, the frequency of black pixels is calculated. The segments that satisfy 

the following criterion are, then, selected as: 

𝑓(𝑆) > 𝑚 + 𝑘 ∗ 𝑠 

where 𝑓(𝑆) is the frequency of the black pixels in the segment 𝑆 while 𝑚 and 𝑠 are 

the mean and the standard deviation of the black pixel frequency of the entire page, 

respectively. The parameter 𝑘 in the formula determines the sensitivity of the 

detection method. The higher the 𝑘, the fewer segments will be detected. 

• Re-application of IGT (Local Thresholding) 

The IGT method is then applied to the selected segments of the document. 

The iterative procedure stops when either |𝑇𝑖 −  𝑇𝑖−1| < 𝑡𝑐 is satisfied or the 

number of iterations required in the initial global thresholding is exceeded.  

It is obvious that the performance of the H-IGT algorithm depends on the 

value of the parameter 𝑘 and the size 𝑛 of the window used in local thresholding as 

well as on the termination criterion 𝑡𝑐. Despite what is suggested in [1], the system 

uses as initial values for 𝑘, 𝑛 and 𝑡𝑐, 2.5, 50 pixels and 0.4 respectively. These 

settings were provided by the author based on new unpublished experiments on the 

algorithm. 

3.3 Fixed Window Local Thresholding (FWLT) 

This algorithm is a simple and fast local binarization method that like H-IGT 

uses a fixed square window to segment the image and decides on the threshold 

based on a given percentage of the mean intensity value of all the pixels in the 

window: 

𝑇 = 𝑘 ∗ 𝑚 
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where T is the calculated threshold and k is the given percentage. Apart from k, the 

quality of the produced image depends on the window parameter w as in previous 

algorithms. The system uses as initial values for k and w, 82 and 50 pixels 

respectively. 

Despite the simplicity of the algorithm it has certain advantages especially 

when compared to Niblack. Using a fixed window makes the algorithm faster. In fact 

the bigger the window is, the faster the algorithm performs. On the other hand a 

fixed window means that the algorithm cannot adapt to each pixel individually as in 

the case of a sliding widow where the pixel to be classified lies at the center of it. But 

as was demonstrated in Figure 2 the best results were achieved in bigger windows 

resulting in very slow performance from the algorithm. The application of the 

algorithm in the same document as in Figure 2 is show in Figure 3. 

(a)

(b)

 

(c) 

Figure 3. FWLT (a) k=70 w=25, (b) k=70 w=50, (c) k=70 w =100 

Another advantage of FWLT is that it can correctly classify big background 

areas even if they consist of pure black pixels. This is demonstrated in Figure 4. 
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(a) 

(b) 

Figure 4. FWLT on Samos Historical Archive Document (a) Original, (b) k=88 w =20
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As long as k is bigger than the biggest text stroke in the document the 

algorithm will correctly classify big black areas as background without harming useful 

text foreground pixels. 
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4. Simulated Annealing 

Simulated Annealing (SA) is a metaheuristic probabilistic optimization 

method used to exploit the minimum (or maximum) of a given function that depends 

on many parameters (combinatorial optimization). Osman and Laporte in [8] 

describe metaheuristic methods as follows: 

“A metaheuristic is formally defined as an iterative generation process which 

guides a subordinate heuristic by combining intelligently different concepts for 

exploring and exploiting the search space, learning strategies are used to structure 

information in order to find efficiently near-optimal solutions.” 

Simulated Annealing was first introduced by Kirkpatrich, Gelatt and Vecchi [9] 

who developed the method based on previous work from Metropolis et al. [10]. 

Metropolis et al. described the behavior of molecules during the cooling phase of 

liquids or metals in metallurgy (annealing phase) from moving freely at high 

temperatures until they find equilibrium at a lower temperature. Kirkpatrich, Gelatt 

and Vecchi introduced a method that simulates this behavior. 

Most minimization strategies find the nearest local minima by simply 

accepting every solution that improves the best solution found so far. Simulated 

Annealing avoids local minima by probabilistically accepting solutions that do not 

improve the best solution so far. The process begins from an initial state with some 

random or default parameters. Then these parameters are given a small random 

displacement. The overall difference of energy (ΔΕ) from the previous step is then 

computed. Our goal is to find the lowest possible energy state so if ΔΕ <= 0 the new 

state is accepted and a new iteration begins based on the new energy state. If not 

then the new state is probabilistically accepted or rejected based on a random 

number generated between 0 and 1 and the current temperature. This allows for 

parameter space exploration at high temperatures. This exploration is restricted as 

the temperature drops. This enables the system to go to higher energy states 

avoiding local minima that would otherwise trap the process. The slower the process 

proceeds, the higher the probability that this final energy state is the lowest 

between all the energy states that the system can have. 
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It is straightforward that this method can be used in document binarization 

since it is a combinational optimization problem as almost all algorithms depend on 

one or more independent parameters. The energy of the system can be computed 

based on an evaluation measure of the binarization result at each step. Our system 

uses an implementation of SA taken from Prokopiou K. [11] published as an open 

source project (available at https://github.com/kprokopiou/RuLieR) who 

implemented it in a system that optimizes page rule-line removal algorithms. This 

implementation was modified and optimized to work in our system. 

4.1  Detailed implementation of Simulated Annealing 

The process starts at an initial state where the default algorithm parameters 

are used unless overridden by the user. The system allows to start from every 

parameter settings allowed by the algorithm.  For the energy calculation the system 

compares the produced by the algorithm binarized image to a Ground Truth (GT) 

image. For the comparison a widely used evaluation measure (F-Measure or 

Harmonic Mean) is used. F-Measure is defined as: 

𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

 

 where: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

and  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑇𝑃 stands for True Positive is the total number of foreground (black) pixels in 

the binarized image that are also foreground in the GT image.  

𝐹𝑁 stands for False Negative is the total number of background (white) pixels 

in the binarized image that are foreground in the GT image. 

𝐹𝑃 stands for False Positive is the total number of foreground (black) pixels in 

the binarized image that are background in the GT image. 

https://github.com/kprokopiou/RuLieR�
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Precision can be seen as a measure of quality as it answers the question 

“How many of the foreground pixels identified are actually foreground?” and recall a 

measure of quantity as it answers the question “How many of the total foreground 

pixels were correctly identified?”. The F-Measure combines precision and recall in an 

even way that gives a better representation of the similarity between the GT image 

and the produced binarized image.   

Our goal is to maximize F-Measure meaning that higher F-Measure leads to 

lower energy states. Maximum value for F-Measure is 1 or 100% when all pixels are 

correctly predicted thus the binarized image is identical to the GT image.  

As in [11] the calculation of the temperature is based on Press et al. [12] and 

is given by the following formula: 

𝑇 = 𝑇0 ∗ [1 − �𝑡 𝑀𝐴𝑋_𝐼𝑇𝐸𝑅𝑆� �]𝑎 

where 𝑇0 is the initial temperature, 𝑡 is the current iteration, 𝑀𝐴𝑋_𝐼𝑇𝐸𝑅𝑆 is the 

maximum number of iterations allowed and 𝑎 is a constant number that can be 

usually set to 1, 2 or 4 depending on the position of the relative minima. Large values 

of 𝑎 will spend more time at lower temperatures. The system uses 𝑇0 = 100, 

𝑀𝐴𝑋_𝐼𝑇𝐸𝑅𝑆 = 45 and 𝑎 = 1. 

The system calculates the energy of the initial state using the default settings 

as described above. Then a new parameter set is calculated by randomly setting one 

parameter taken from a small neighborhood around the old value. The 

neighborhood is calculated as follows: 

• First the half range of the neighborhood is calculated using the 

following equation: 

ℎ𝑎𝑙𝑓𝑅𝑎𝑛𝑔𝑒 =
(𝑖𝑛𝑖𝑡𝑅𝑎𝑛𝑔𝑒 ∗ 𝑘3)

3
 

where 𝑘 is a loop counter starting from 1 and increased by 1 every time a 

new solution is rejected and 𝑖𝑛𝑖𝑡𝑅𝑎𝑛𝑔𝑒 is the initial range for that specific 
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parameter. In that way the neighborhood grows bigger in case the new energy state 

is not accepted allowing for wider spectrum exploration.  

• Then the lower and upper bound of the neighborhood is calculated: 

𝑙𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 =  𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 −  ℎ𝑎𝑙𝑓𝑅𝑎𝑛𝑔𝑒 

𝑢𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 =  𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 +  ℎ𝑎𝑙𝑓𝑅𝑎𝑛𝑔𝑒 

 

• A check is performed to align the new borders to the initial range of 

the parameter in case they exceed it. Finally, the new value is calculated as follows: 

 

𝑛𝑒𝑤𝑉𝑎𝑙𝑢𝑒 = 𝑙𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 +  𝑟𝑎𝑛𝑑𝑜𝑚𝐷𝑜𝑢𝑏𝑙𝑒 ∗  (𝑢𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 −  𝑙𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑) 

 

Using the new parameter set, a new binarized document is produced and its 

energy is calculated using F-Measure as described. The difference between the old 

and the new energy 𝛥𝛦 is then calculated. If 𝛥𝛦 ≤ 0 then the new state is accepted 

and a new iteration begins. If 𝛥𝛦 > 0 then the new state is not discarded but a 

probability 𝑃 is calculated based on the following formula: 

𝑃 = �
𝑇
𝑇0
� ∗ 𝑒

−𝛥𝛦
𝛵  

where 𝑇 is the current temperature and 𝑇0 is the initial temperature. If 𝑃 is bigger 

than a random number generated between 0 and 1 then the new state is accepted 

otherwise the old state is retained and a new iteration begins. When either the 

maximum number of iterations 𝑀𝐴𝑋_𝐼𝑇𝐸𝑅 is reached or the lowest possible energy 

is achieved the process terminates.. In Figure 5 below the flowchart of the process is 

depicted.  
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Figure 5. Simulated Annealing flowchart 

Initialize: 
initState, initRange 
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For all 
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5. Implementation of the system 

5.1 Tools used  

The programming language used to implement the system is JavaTM [13] in 

particular JavaTM Standard Edition Development Kit (JDKTM) version 7 update 7 [14] 

and later versions. Java was chosen due to the fact that it is popular, easy to use, 

object oriented, expendable and platform-independent, making it the best candidate 

for research purposes without any limitations and cost. It allows you to create 

modular programs and reusable code. Moreover, there is a number of free existing 

libraries written in Java for image I/O, display, processing etc saving the developer 

from important development time. Most of the image handling is done by the Java 

2D API which is incorporated into the JDKTM. However, in order to support more 

image formats such as TIFF, the Java Advanced Imaging v1.1.2 [15] is used. 

For the development of the system NetbeansTM 7.1.1 Integrated 

Development Environment is used freely available at [16]. 

5.2 Main Window 

The Extendable Image Binarization Tool’s main window (fig.1) consists of four 

areas; the toolbar, the image display area, the algorithm selection, configuration and 

application area and the log area.  

 

Figure 6. Main Window 
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5.2.1 Toolbar 

The toolbar area contains the Fit-To-Window button that fits the image 

to the image display area and the Simulated Annealing panel. 

  

Figure 7. The Toolbar 

The Simulated Annealing panel is responsible to load the Ground Truth 

(GT) and Original image folders and start a new session. In order for the “start” 

button to be activated, these folders must contain the same number of image files. 

There are no naming conventions for the images in the folders. However, the 

alphabetical order of the returned image lists must hold the GT images of the 

corresponding Original images at the same index. Once the “start” button is 

activated a new simulated annealing session can be started. The initial configuration 

settings are taken from the current settings of the selected algorithm. During the 

session the “start” button is deactivated and the “stop” button is activated, enabling 

the user to terminate the session at any time before it is completed. During the 

session useful information is displayed on the Log Area. 

5.2.2 Image Display 

The image display area displays the selected image or the produced 

image after a “Binarize” action is performed. The user can zoom in/out using the 

mouse scroll button and pan by left click, hold and drag. Note that every time a 

“Binarize” action is performed the binarization is done on the original image and the 

resulting image is displayed. 

5.2.3 Algorithm Selection, Configuration and Application 

This area contains from top to bottom the following subareas: 
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• Image folder selection. 

 

Figure 8. Image folder selection 

In this subarea the user can designate a folder that contains the 

images for binarization. This can be done by left clicking on the “Load Folder” button 

and browsing through the desired folder from the popped-up file selection dialog. 

Once the folder is selected, the list above the button is populated with all the images 

the folder contains. The user can then select individual images from the list by left 

clicking on the image name. The image then is displayed on the image display area. 

• Algorithm selection and configuration. 

 

Figure 9. Algorithm selection and configuration 
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In this subarea the user can select the desired binarization algorithm 

from the drop-down list. Once the algorithm is selected the appropriate algorithm 

configuration is displayed with the specific algorithm settings.  

• User feedback and algorithm application. 

 

Figure 10. User feedback and algorithm application 

In this subarea the user can apply a binarization on the selected image 

based on the current settings and provide a feedback on the results of the 

binarization. The user has three options; under, ok and over. Under should be 

selected when the result of the binarization contains noise more than desired. Over 

should be selected when the binarization produces a “white” image with part of the 

valuable information missing. Ok should be selected when the result is satisfactory.  

Based on the implementation of each algorithm, selecting one of the feedback 

buttons can result in the automatic reconfiguration of the algorithm towards new 

settings that should produce images closer to the desired level of binarization.  The 

user, however, can override this proposal and fine tune the algorithm manually. 

Once the correct settings are determined the user can apply the algorithm to all the 

images in the selected folder by selecting the “Binarize All” button. The images 

produced are stored in the same folder with the same name extended with an 

abbreviation of the current name and settings of the algorithm used. Log files with 

the results of each step are produced for further processing. The log file framework 

is explained in the following section. 

5.2.4 Log Area 

 

Figure 11. Log Area 
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The Log text area is used to display useful information regarding the 

process of each Simulated Annealing process. In particular the current algorithm 

settings as well as the best PERR and the Difference of Energy (ΔΕ) of each 

binarization are displayed. At the end of the session a summary of the best settings 

is displayed. 

5.3 Logging 

The first time the application starts, a folder called “Log” is created in the 

same path the application was started from. This folder contains all the log files 

produced by the application. Each time a new algorithm is selected a new log file is 

created with the name of the algorithm and the current date and time. The log file 

(fig.2) is a comma separated value (csv) file with a header containing the image 

name, the algorithm used, the number of tries, the names of the different settings 

and the feedback, and one line for every user feedback input with the corresponding 

values.  

 

Figure 12. Log file contents 
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6. Evaluation of the system 

 

The evaluation of the system is done based on four pylons. The capabilities of 

the system are shown applying the Simulated Annealing (SA) process to the DIBCO 

2011 dataset using the Hybrid-Iterative Global Thresholding algorithm. The goal is to 

show that the system can improve the binarization results in comparison to the 

default settings of the algorithm. Then the ability of the system to consistently find 

very close to the best configuration settings is demonstrated by finding FWLT’s best 

settings for a single document using Brute Force and then comparing the 

binarization results and the total time taken to the results obtained using multiple SA 

sessions. Moreover, an attempt is made to estimate the number of GT images 

required for the SA process to provide settings that can be applied to the entire 

dataset with the best results. Finally, a comparison is done between all 

methodologies and algorithms used in this system. 

 The configuration of the system that the evaluation was performed on is shown 

below: 

 

System Type Notebook 

Processor AMD C-60 APU with Radeontm HD 

Graphics 1.00 GHz 

Installed Memory (RAM) 4.00 GB  

Operating System Windows 7 Home Premium SP1 64-bit 

Java Runtime Environment (JRE) Javatm SE RE build 1.7.0-b147 

 

Table 1. Evaluation System Configuration 

The evaluation was done on a low end machine to demonstrate that ability of the 

system to run on these kinds of machines. 

6.1 H-IGT on DIBCO’11 
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 DIBCO’11 dataset consists of a collection of eight (8) handwritten documents 

and eight (8) printed documents with their respected Ground Truth (GT) documents. 

The original documents are shown below:  

 

          HW 1           HW 2   HW 3              HW 4 

 

  HW 5            HW 6                    HW 7           

 

     HW 8 

 

        PR 1         PR 2             PR 3 

 

    PR 4        PR 5          PR 6 
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     PR 7       PR 8 

Figure 13. DIBCO’11 dataset 

As described in 2.2.2 the H-IGT algorithm depends on three parameters; 

sensitivity 𝑘, window size 𝑛 and termination criterion 𝑡𝑐 with default settings 2.5, 50 

and 0.4 respectively as described in §3.2. Using these setting the algorithm was 

applied on the dataset and achieved an F-Measure of 81.3745%. In order to 

demonstrate that the system can find better settings, an SA session was performed 

on the dataset with the respective GT documents. The results are shown on the 

following table. 

initial 

parameters 

time 

(secs) 

best parameters 

found 

# of 

binarizations 

Achieved 

F-Measure 

Improvement  

(as percentage of the 

default  

F-Measure) 

k=2,5 n=50 

tc=0,4 
1317 

k=2,7291 n=65 

tc=0,1251 
2144 82,4114% 1,2743% 

 

Table 2. H-IGT on DIBCO’11 

It is straightforward that the system using SA improved the performance of 

the algorithm. Note that the session started from the default settings.. Another thing 

that is apparent from this test is that the designers of the algorithm have chosen the 

default settings carefully to work well on every type of document such as the 

DIBCO’11 dataset.  The above test could very well lead to a change on the default 

settings of the algorithm since the improvement is considerable and the new settings 

are quite different than the default ones especially the termination criterion tc that 

leads to more iterations during the global thresholding phase.  
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6.2 FWLT on random document. 

The second stage of evaluation was performed on the Fixed Window Local 

Thresholding (FWLT) algorithm. A single document was randomly chosen from the 

DIBCO’11 dataset. The reason a single document was chosen and not the entire 

dataset is because it would take considerably more time to explore the search space 

of the algorithm using Brute Force. Moreover, the scope of the test is to 

demonstrate the ability of SA to find very close to the best configuration settings in a 

fraction of the time needed to explore the entire search space. The document used 

is HW4 with its respective Ground Truth. 

6.2.1 Brute Force 

The results of using Brute Force to explore the entire search space are 

shown below: 

time 

(secs) 

best 

parameters 

found 

# of 

binarizations 

Best  

F-Measure 

3556 k=79 w=15 15096 81,9694% 

 

Table 3. Brute Force results on FWLT 

The process took nearly an hour to finish although the range of the 

configuration settings of the algorithm was restricted for k to values between 50% 

and 100% and for w from 5 to 300 pixels. In addition to this, k was specified as 

integer although it could be specified as double. This gives only 51 values in the given 

range of the setting. As mentioned above the goal is to evaluate the performance of 

SA in comparison to Brute Force and not to find the best settings for the algorithm. 

As it is depicted in Figure 11 using k as double would not give us a better resylt on 

the best settings. It is obvious that a more complex algorithm with a bigger search 

space and a bigger dataset would require a much greater deal of time to explore the 

entire dataset. The graphical representation of the results is shown on Figure 6. 
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Figure 14. Brute Force Results 

6.2.2   Simulated Annealing 

In order to demonstrate the ability of SA to consistently find very good 

results, 100 SA sessions were performed on the same document using the 

algorithm’s default settings (k=82, w=50) as initial settings. The results are shown 

below:  
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# time 
(secs) 

best parameters 
found 

k w 
# of binarizations Achieved F-Measure 

Difference 
(as percentage of the best  

F-Measure) 

1 14 77 49 95 0,791566896 -3,43% 
2 14 79 38 99 0,798197315 -2,62% 
3 14 81 37 96 0,791214025 -3,47% 
4 15 74 35 101 0,815865061 -0,47% 
5 15 75 35 103 0,815575093 -0,50% 
6 15 74 43 99 0,813115408 -0,80% 
7 15 69 43 103 0,811832029 -0,96% 
8 15 78 35 99 0,811630354 -0,98% 
9 14 75 44 98 0,803878171 -1,93% 

10 15 71 37 102 0,814529398 -0,63% 
11 15 71 51 105 0,804840846 -1,81% 
12 15 80 15 101 0,818815261 -0,11% 
13 15 77 25 104 0,817384322 -0,28% 
14 15 74 35 102 0,815865061 -0,47% 
15 15 74 50 101 0,803003842 -2,04% 
16 15 80 15 101 0,818815261 -0,11% 
17 14 81 14 99 0,812979398 -0,82% 
18 15 75 34 101 0,81372765 -0,73% 
19 15 73 35 105 0,815648203 -0,49% 
20 14 82 33 98 0,79077677 -3,53% 
21 14 75 51 97 0,797672422 -2,69% 
22 14 79 43 95 0,800313702 -2,36% 
23 15 78 21 99 0,818958035 -0,09% 
24 15 75 40 99 0,804407061 -1,86% 
25 14 77 37 99 0,808043876 -1,42% 
26 14 79 41 97 0,795937423 -2,90% 
27 15 73 37 101 0,81442647 -0,64% 
28 14 79 43 95 0,800313702 -2,36% 
29 14 78 51 94 0,786401024 -4,06% 
30 15 77 21 103 0,818905676 -0,10% 
31 16 77 17 107 0,818193054 -0,18% 
32 13 84 37 95 0,768963601 -6,19% 
33 15 75 35 101 0,815575093 -0,50% 
34 14 77 22 99 0,815256644 -0,54% 
35 13 82 50 91 0,763929921 -6,80% 
36 13 79 51 93 0,78122015 -4,69% 
37 14 80 26 98 0,798251475 -2,62% 
38 15 73 35 102 0,815648203 -0,49% 
39 15 79 35 102 0,808816169 -1,33% 
40 15 80 15 104 0,818815261 -0,11% 
41 14 77 28 98 0,809463422 -1,25% 
42 15 73 43 102 0,814177134 -0,67% 
43 15 74 35 104 0,815865061 -0,47% 
44 15 73 43 102 0,814177134 -0,67% 
45 14 73 63 100 0,791564757 -3,43% 
46 14 71 50 100 0,806810397 -1,57% 
47 15 74 35 105 0,815865061 -0,47% 
48 14 68 63 98 0,79685136 -2,79% 
49 14 77 53 97 0,78165874 -4,64% 
50 14 73 50 99 0,804136277 -1,90% 
51 14 72 56 98 0,794077054 -3,13% 
52 14 78 42 97 0,804724198 -1,83% 
53 14 80 37 95 0,797424781 -2,72% 
54 13 82 50 91 0,763929921 -6,80% 
55 14 72 60 100 0,793290403 -3,22% 
56 15 74 35 107 0,815865061 -0,47% 
57 15 74 35 101 0,815865061 -0,47% 
58 15 74 41 103 0,804515986 -1,85% 
59 15 73 50 101 0,804136277 -1,90% 
60 14 78 35 99 0,811630354 -0,98% 
61 15 78 34 101 0,810484573 -1,12% 
62 14 83 34 95 0,788950594 -3,75% 
63 14 75 57 96 0,785282334 -4,20% 
64 14 69 73 100 0,788482571 -3,81% 
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Table 4. Simulated Annealing on FWLT 

 

 

 

65 14 79 35 99 0,808816169 -1,33% 
66 15 71 62 101 0,796406713 -2,84% 
67 15 74 35 101 0,815865061 -0,47% 
68 14 77 50 97 0,793871244 -3,15% 
69 16 76 25 108 0,817359929 -0,28% 
70 15 70 43 101 0,813161624 -0,80% 
71 15 76 35 101 0,815104426 -0,56% 
72 15 72 62 101 0,795988058 -2,89% 
73 15 73 35 103 0,815648203 -0,49% 
74 14 77 42 98 0,807352284 -1,51% 
75 14 75 35 101 0,815575093 -0,50% 
76 15 70 50 103 0,807485323 -1,49% 
77 14 70 51 100 0,804799318 -1,82% 
78 15 77 21 103 0,818905676 -0,10% 
79 14 78 15 100 0,81906454 -0,08% 
80 14 78 49 95 0,78772001 -3,90% 
81 13 82 50 91 0,763929921 -6,80% 
82 14 74 35 100 0,815865061 -0,47% 
83 13 82 50 91 0,763929921 -6,80% 
84 13 82 50 91 0,763929921 -6,80% 
85 13 81 50 92 0,771342636 -5,90% 
86 15 79 35 103 0,808816169 -1,33% 
87 15 75 36 101 0,81315282 -0,80% 
88 13 82 50 91 0,763929921 -6,80% 
89 14 79 34 95 0,807643118 -1,47% 
90 15 68 50 103 0,806344845 -1,63% 
91 14 74 37 101 0,813643423 -0,74% 
92 13 76 72 95 0,770462473 -6,01% 
93 14 78 35 97 0,811630354 -0,98% 
94 14 78 37 99 0,804848113 -1,81% 
95 14 77 86 94 0,77094871 -5,95% 
96 14 71 45 97 0,804495663 -1,85% 
97 14 77 43 98 0,806753645 -1,58% 
98 15 69 50 100 0,807657435 -1,47% 
99 14 79 42 94 0,80098243 -2,28% 

100 15 74 43 103 0,813115408 -0,80% 
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Figure 15. Simulated Annealing on FWLT 

The results show that SA, as a probabilistic method, is unlikely to find the best 

overall solution especially in cases where the search space is enormous. However, 

the performance achieved is very close to the best settings. In particular the worst 

performance from SA came when the method could not improve from the default 

parameters that give a performance of 0,763929921. Figure 12 indicates that with a 

possibility of 89%, SA can find a solution within 5% of the best solution. In Figure 13 

the produced binarized images of HW04 are shown for (a) the best settings found 

with BF and (b) the worse settings found with SA.  
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   (a)           (b) 

Figure 16. Best (a) and worse (b) performance of FWLT using SA 

 

 The great benefit comes from the time and number of binarizations required 

to achieve that result. On average it took less than 15 seconds for each session in 

comparison to 3556 seconds for the Brute Force; an improvement of 99,6%! In 

addition to this, the result was achieved with less than 100 binarizations on average 

a much smaller figure than Brute Force’s 15096. Taking into account that the search 

space was significantly reduced to expedite the evaluation, the benefit of the use of 

Simulated Annealing is straightforward. The corresponding graphical representation 

of four random sessions is shown below: 
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Figure 17. SA on FWLT random sessions 

The difference between the above graphs and Figure 11 is visually evident. The 

SA process spends most of its time in the top area of the diagram within the area 

where the best performance of the algorithm is achieved. There are also scattered 

points in the periphery of that area indicating the effort of the SA process to avoid 

being locked in local minima.  

6.3 Estimation of required GT images. 

As mentioned in §1.2, when processing a collection of documents, only a small 

number of GT images is needed to run an SA session and then apply the settings 

found to the rest of the collection. Normally, if the GT images are not given, the user 

has to spend some time creating them with the aid of a common image 
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manipulation application. This time spent is a good investment especially when large 

collections of images have to be processed. The question that arises is: “How many 

images are required?” In theory when a single image is used the SA process provides 

the best settings for that image only. If the image is chosen carefully to represent 

most if not all image degradations in the collection or the collection consists of 

images that uniformly have the same degradation issues then the settings found for 

that image will be good also for the collection. However, the more GT images you 

use the better the settings will fit for the collection.  

In order to explore the number of images required, beyond which no significant 

improvement is made, a test was conducted using a subset of 70 images from the 

artificial database of Stathis P., Kavallieratou E. and Papamarkos N. [17] with its 

respective GT images. The subset was created taking images that suffer from the 

same type of degradation issues from the maximum intensity collection. The images 

taken are those created using background noise images 4, 5, 7, 9, 10, 11 and 15 from 

the collection. The main problems that these images suffer from are described in the 

following table:  

Document Problem(s) Resolution 

4 ink seepage, stains, strains 1188x889 

5 stains, strains, stripes 1218x1405 

7 uneven illumination, stains 1701x2340 

9 uneven illumination, stains 2552x3509 

10 background variation, stains 2552x3510 

11 background variation, stains 2507x3510 

15 background variation, stains 949x595 

Table 5. Background noise images 

An SA session was run using one random image at the beginning and subsequent 

sessions adding one image at a time. The images added to the first image where 

chosen properly in order to represent different background noise. The algorithm 

used was the FWLT. The settings found on each session were applied to the entire 

collection and the results obtained were compared to those of the respective SA 
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session. The test terminated when the results converged and there was no 

significant improvement. Only six images were used overall for the SA sessions. The 

images used in the order they were used are 3_11.tif, 2_4.tif, 10_15.tif, 8_10.tif, 

7_5.tif and 4_7.tif. There was no need to add an image with background noise 9 

since the results converged earlier. The results are shown in the following table: 

Documents Used SA Collection 

1 0,999992773 0,864746979 

2 0,991293602 0,931140304 

3 0,976368426 0,942449619 

4 0,95089029 0,940011457 

5 0,960095792 0,95414573 

6 0,96509773 0,948460735 
 

Table 6. Estimation of required GT images - Results 

The values depicted above are the F-Measure achieved. The convergence of the 

results is evident in the following diagram: 

 

Figure 18. Estimation of required GT images - Diagram 

 After the third image, the settings found produce virtually the same results 

in the collection despite the fact that the convergence of the two lines is done in the 
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fourth image. In the diagram above one can observe that the SA process achieved an 

F-Measure of almost 1 (0.999992773) for only one image. This indicates both the 

capabilities of the binarization algorithm (FWLT) and the SA process. As expected, as 

more images are added to the GT set, the SA process produces worse results for the 

GT set as the settings found now are not fit for each image independently but for all 

the images together. This is also reflected on the Collection line. As more images are 

added to the GT set, the settings found are more fit for the entire collection and not 

for individual images.  

This test showed that for an almost uniform database as the one used, four 

(4) images are needed to be converted to GT images. The exact number of images 

needed for other collections depend on the specific characteristics of each collection 

but in any case, if chosen properly, this figure should be around what was found 

above.  

6.4 Comparison of different fine tuning methodologies and binarization 

algorithms 

Apart from Simulated Annealing the system implements a feedback 

mechanism that facilitates the manual process of fine tuning a binarization algorithm 

as described in §5.2.3.3. A comparison test was performed for all three implemented 

algorithms using both SA and feedback mechanisms and comparing the results to the 

best possible results taken for each algorithm using Brute Force were applicable. In 

order to expedite the test, especially for Niblack’s algorithm, only one image was 

used; the HW4 from DIBCO ’11. This is the same image used in §6.2 and therefore 

the results obtained for FWLT could be reused. Another reason for using only one 

image was the fact that the feedback manual process gets complicated as a process 

when more images are added since it is harder for the user to assess the average 

results of a binarization in different images. This happens because, as mentioned in 

§1.1, different settings may work better for an image and worse for another image in 

comparison to previous settings and therefore the user cannot judge easily if an 

improvement was made. It is obvious that in case many images are required the SA 

process is the only way to go in order to fine tune an algorithm.   
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As mentioned above, a brute force was also run for comparison reasons. 

Unfortunately, this was not possible for Niblack since a BF would require roughly 21 

days to be completed! The overall results are depicted in the following table: 

Methodology Repetitions initial 
parameters 

Time 
(secs) Best parameters found # of 

binarizations F-Measure 

Difference 
(as 

percentage 
of the best 

F-
Measure) 

Precision Recall 

NIBLACK 

feedback 24 k=0.0 w=15 ~5300 k=-1.7 w =100 24 0,768856669 - 0,944237 0,648421 

SA 1 k=-1.0 
w=95 18880 k=-1.4 w =92 99 0,790886118 - 0,868777 0,725813 

brute force - - ~21 
days - - - - - - 

H-IGT 

feedback 25 k=2,5 w=50 
tc=0,4 ~750 k=1,0 w=100 tc=0,05 25 0,755667067 -1,65% 0,876994 0,66383 

SA 1 k=2,5 w=50 
tc=0,4 48 k=2,0 w=51 

tc=0,24596588283675552 142 0,755155669 -1,71% 0,836134 0,688477 

brute force 1 - 170244 k=1,0 w=62 tc=0,3 644930 0,768324504 - 0,793224 0,74494 

FWLT 

feedback 24 t=82 w=50 ~720 k=52 w=300 24 0,729080632 -11,05% 0,915628 0,605681 

SA 1 t=82 w=50 19 t=75 w=35 102 0,815575093 -0,50% 0,860407 0,775184 

brute force 1 - 3556 k=79 w=15 15096 0,819694245 - 0,877977 0,768668 

Table 7. Summary of methodology and algorithm comparison 

It is interesting to point out that, although the feedback methodology 

achieves worse or equal to the SA results, in terms of precision it is always the best 

method. During the feedback processes, the goal was to achieve the best image 

possible. This is subject to user interpretation. An effort was made to strike a balance 

between the text stroke and the amount of noise in the background. This led to texts 

thinner than the Ground Truth’s text and hence big False Negative (FN) and lower 

recall. On the other hand the noise was minimized in comparison to SA which 

accounts for lower FP and consequently better precision. These results are visually 

evident in the following figures:   
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          (a)  

         (b) 
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          (c) 

Figure 19. Visual results of algorithm and methodology comparison. Left images for 

feedback and right images for SA. (a) for Niblack, (b) for H-IGT and (c) for FWLT 

This comparison shows that a user with good knowledge of the way an 

algorithm works may reduce the search space considerably and find a good solution 

fast. However, even this fact requires from the user to invest time in trial and error 

process that takes a lot of time especially for algorithms like Niblack’s that could take 

minutes to binarize an image. On the other hand, the SA process requires only the 

time to load the folders for the original and the GT images and then start the 

process. In addition to this, the time to create the GT images should be considered 

which in any case, as shown in §6.3, is small as it only requires a small number of 

images. Moreover, it is a task that has to be done once for every collection. 

To sum up, if the task is to binarize large collections of images, the only 

feasible solution is to use the Simulated Annealing methodology. 
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7. Conclusion and future development. 

In this thesis a semi-automatic system was developed that reduces the time 

and effort spent to fine tune binarization algorithms. The system incorporates a 

metaheuristic probabilistic optimization method called Simulated Annealing that is 

used to explore the search space of a binarization algorithm. This method is used in 

combinational optimization in order to find, with high probability, a good solution for 

a difficult multidimensional problem. A manual methodology for fine tuning 

binarization algorithms that is based on user feedback was also included. Three 

binarization algorithms were incorporated that were used for the evaluation of the 

system. Nevertheless, the system was designed so that it can be extended with the 

addition of new, user developed, algorithms using a trivial interface.  

During the evaluation of the system its ability to apply SA on the image 

binarization problem was demonstrated successfully both in comparison to default 

and best algorithm settings that were found using a brute force method. In addition 

to this, the number of Ground Truth images required for an SA session to provide 

results applicable to the entire dataset was explored. This led to the conclusion that 

for a big dataset no more than 5 GT images are required. Finally, a comparison of 

both SA and user feedback is done for all algorithms in respect to a Brute Force 

approach were applicable.  

The system is already expendable allowing for new algorithms to be installed 

by means of a simple interface. In the future this could also be done for the 

optimization method. Along with Simulated Annealing the user could create and 

install into the system custom methods. Then the user could choose the desired 

method and prior to starting the optimization session. Also some functionality could 

be implemented to assist the user in creating the Ground Truth images without 

having to open them in an image manipulation program. This could be done simply 

by clicking and inverting pixels on the image from foreground to background and 

vice versa. 
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8. Appendices 

8.1 Appendix A: Algorithm developer manual 

The application is designed to accommodate for the integration of new 

algorithms. This is done through the use of a service provider interface (spi) that 

allows the application to load new jar files and populate the algorithm list. A 

developer that desires to add a new algorithm needs to implement the 

ICSDAlgorithm interface. The only prerequisite for this implementation class is to 

have a zero-argument constructor and to implement the following methods: 

• public BufferedImage binarize(BufferedImage input); 

This method is the main method of the algorithm. The method provides 

the developer with a BufferedImage and expects a new BufferedImage that should 

be the binarized version of the image based on the current settings. The new image 

is displayed on the image display area. Inside this method the developer can 

implement the details of the new algorithm. 

• public JPanel getConfigurationPanel(); 

The developer has to provide a JPanel with the visualization of the 

algorithm settings. If the algorithm has no settings then an empty JPanel should be 

returned. 

• public String getConfigurationDescription(); 

The developer has to provide an abbreviated description of the current 

settings of the algorithm. For instance if the settings are window size and threshold 

the returned string could be “NiBlack_W30_T85”. This is the text that is appended to 

the image filename when a “Binarize All” action is performed. 

• public ICSDAlgorithmParameter[] getParameters(); 

The developer has to provide an array of all configuration attributes of 

the algorithm e.g Threshold. 

• public boolean setParameterValues(ICSDAlgorithmParameter[] 

parameters); 
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• public boolean setParameterValues(Number[] newValues); 

• public boolean setParameterValue(int index, Number newValue, 

boolean updatePanel); 

Whenever these methods are called, a new set of parameters or a single 

parameter is provided respectively.  

• public Map<String, String> getConfigurationMap();  

The developer has to provide a map of all the configuration setting 

names as keys along with the setting values as values. This map is used for logging. 

 

• public void resultOK(); public void resultUnder(); public void 

resultOver(); 

These methods are called whenever a user feedback “OK”, “Under” or 

“Over” action is performed respectively. It is up to the algorithm developer to decide 

if there is any action to be taken. Normally for “Under” or “Over” the developer 

should suggest new settings towards the desired binarization level. 

 

• public String toString(); 

This method should return the name of the algorithm displayed on the 

drop-down list. 

Once the code is ready, the following steps should be taken to integrate the 

produced jar to the application: 

• Copy the jar file into the lib folder. 

• Open the applications binarization.jar file with winzip or winrar. 

• Browse to the META-INF/services folder 

• Open the 

edu.aegean.icsdm.binarization.algorithms.spi.ICSDAlgorithm file with 

a text editor. 

• Enter a new line with the fully qualified name of the new algorithm’s 

class e.g. org.algorithms.NewAlgorithm. Save the file. 

• Browse to the META-INF folder. 
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• Open the MANIFEST.INF file with a text editor. 

• Enter the jar name in the class path e.g Class-Path: 

lib/AbsoluteLayout.jar, lib/NewAlgorithm.jar. 

• Re-start the application. 
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8.2 Appendix B: Simulated Annealing Source Code 

The class ICSDSimulatedAnnealing extends the class Thread. When the “start” 

button is pressed a new Simulated Annealing session is started and a new thread is 

spawned. The method run is called that contains most of the source code.  

   public void run() { 
      //Initialize 
      newStateCounter = 0; 
      ICSDAlgorithmParameter[] parameters = algorithm.getParameters(); 
      int parameterSize = parameters.length; 
      //Restrict the initial range so that we have a smaller neighborhood 
      initRange = new double[parameterSize]; 
      for (int i = 0; i < parameterSize; i++) { 
         double range = parameters[i].getMax().intValue() - parameters[i].getMin().intValue(); 
         initRange[i] = range / Math.pow(NB_MAX, 3); 
         //Make sure that for integers the range is at least a lower limit  
         if (parameters[i].getType() == ICSDAlgorithmParameterType.INTEGER) { 
            if (MIN_INTEGER_RANGE > initRange[i]) { 
               initRange[i] = MIN_INTEGER_RANGE; 
            } else { 
               initRange[i] = (int) initRange[i]; 
            } 
         } 
      } 
      //Initialize state and counters 
      initState = new ICSDState(algorithm, gTImages, origImages); 
      newStateCounter++; 
      // Current states and their respective energies       
      ICSDState s = initState; 
      ICSDEnergy e = s.getEnergy(); 
 
      // Initialize the best state 
      S_BEST = initState; 
      Date startTime = new Date(); 
      ICSDMainWindow.LOGGER.log(Level.FINE, startTime.toString()); 
      ICSDMainWindow.LOGGER.log(Level.FINE, "New Simulated Annealing session started with 

initial parameters:"); 
      printState(initState); 
      ICSDState sNew; 
      ICSDEnergy eNew; 
 
      Random random = new Random(); 
 
      Number[] newValues = new Number[parameterSize]; 
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      for (int i = 0; i < parameterSize; ++i) { 
         newValues[i] = s.getParameters()[i].getValue(); 
      } 
 
      // While there is time left or there is improvement, 
      // and the optimum (minimum energy) is not achieved 
      for (int t = 0; t < MAX_ITERS && e.compareTo(ICSDEnergy.BEST_ENERGY) > 0; t++) { 
 
         double temp = getTemperature(t); 
         ICSDMainWindow.LOGGER.log(Level.INFO, "New Temperature: " + temp); 
 
         boolean[] aBoundReached = new boolean[parameterSize]; 
         boolean[] bBoundReached = new boolean[parameterSize]; 
 
         for (int i = 0; i < parameterSize; ++i) { 
            aBoundReached[i] = false; 
            bBoundReached[i] = false; 
         } 
         // Pick some neighbor and compute its energy. 
         int dim = 0; 
         boolean foundLocalBest = false; 
         parameters = algorithm.getParameters(); 
         // We loop for as long as there are more parameters and the local best state is not found 
         for (int k = 1; dim < parameterSize; k++) { 
            // We loop for as long as there are more parameters and the boundaries of the 
            // current parameter are not reached 
            for (; dim < parameterSize && !(aBoundReached[dim] && bBoundReached[dim]); dim++) 

{ 
 
               // Stop button pressed. Return current best state 
               if (isInterrupted()) { 
                  ICSDMainWindow.LOGGER.log(Level.FINE, "SA execution was stopped by the user!!"); 
                  ICSDMainWindow.LOGGER.log(Level.FINE, "Current Best State:"); 
                  printBestState(); 
                  Date endTime = new Date(); 
                  ICSDMainWindow.LOGGER.log(Level.FINE, "Time Required: " + (endTime.getTime() - 

startTime.getTime()) / 1000 + " secs"); 
                  for (ICSDSimulatedAnnealingEventListener listener : listeners) { 
                     listener.processInterrupted(); 
                  } 
                  return; 
               } 
 
               // Find the range around the current value. The new neighbourhood 
               // will be [value - halfRange, value + halfRange] 
               double halfRange = (initRange[dim] * k * k * k) / 2; 
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               // Find the left bound of the new neighborhood 
               double newABound = parameters[dim].getMin().doubleValue(); 
               if (!aBoundReached[dim]) { 
                  newABound = s.getParameters()[dim].getValue().doubleValue() - halfRange; 
                  if (newABound < parameters[dim].getMin().doubleValue()) { 
                     newABound = parameters[dim].getMin().doubleValue(); 
                     aBoundReached[dim] = true; 
                  } 
               } 
 
               // Find the right bound of the new neighbourhood 
               double newBBound = parameters[dim].getMax().doubleValue(); 
               if (!bBoundReached[dim]) { 
                  newBBound = s.getParameters()[dim].getValue().doubleValue() + halfRange; 
                  if (newBBound > parameters[dim].getMax().doubleValue()) { 
                     newBBound = parameters[dim].getMax().doubleValue(); 
                     bBoundReached[dim] = true; 
                  } 
               } 
 
               // Generate a new value at random from the neighborhood 
               double newValue = newABound + random.nextDouble() * (newBBound - newABound); 
               if (parameters[dim].getType() == ICSDAlgorithmParameterType.INTEGER) { 
                  newValues[dim] = (int) Math.round(newValue); 
               } else { 
                  newValues[dim] = Double.valueOf(newValue); 
               } 
 
               ICSDMainWindow.LOGGER.log(Level.INFO, "NEW Value for " + 

parameters[dim].getName() + ": " + newValues[dim]); 
 
               // Create a new state and compare it with the original state 
               algorithm.setParameterValues(newValues); 
               sNew = new ICSDState(algorithm, gTImages, origImages, temp); 
               newStateCounter++; 
               eNew = sNew.getEnergy(); 
               // Diff of energy must be negative when we head to lower energy state. This means  
               // that the new F-Measure must be higher 
               double diffOfEnergy = e.getFMeasure() - eNew.getFMeasure(); 
               ICSDMainWindow.LOGGER.log(Level.INFO, "\u0394\u0395: " + diffOfEnergy); 
               if (diffOfEnergy <= 0.0) { 
                  // We keep the state and replace the best if better 
                  s = sNew; 
                  e = eNew; 
                  if (eNew.compareTo(S_BEST.getEnergy()) < 0) { 
                     algorithm.setParameterValues(sNew.getParameters()); 
                     S_BEST = new ICSDState(algorithm, gTImages, origImages, sNew.getTemp()); 
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                     newStateCounter++; 
                     ICSDMainWindow.LOGGER.log(Level.FINE, "New Best State found with F-MEASURE: 

" + S_BEST.getEnergy().getFMeasure()); 
                  } 
                  foundLocalBest = true; 
                  continue; // to the next parameter 
               } else { 
                  // We calculate the probability to keep the new state 
                  double probability = sNew.getTemp() == 0 ? 0 
                          : (sNew.getTemp() / T_start) * Math.exp(-diffOfEnergy / sNew.getTemp()); 
                  if (probability > random.nextDouble()) { 
                     s = sNew; 
                     e = eNew; 
                     foundLocalBest = true; 
                     continue; // to the next parameter 
                  } 
               } 
            } 
            if (foundLocalBest) { 
               break; // Calculate new temperature. One iteration is done. 
            } 
         } 
      } 
      ICSDMainWindow.LOGGER.log(Level.FINE, "Optimum Parameters found!!!"); 
      printBestState(); 
      Date endTime = new Date(); 
      ICSDMainWindow.LOGGER.log(Level.FINE, "Time Required: " + (endTime.getTime() - 

startTime.getTime()) / 1000 + " secs"); 
      for (ICSDSimulatedAnnealingEventListener listener : listeners) { 
         listener.processTerminated(true); 
      } 
   } 
 
   /** 
    * Get the temperature for the given iteration 
    * 
    * @param iter The current iteration 
    */ 
   private static double getTemperature(int iter) { 
      return T_start * Math.pow(1 - Math.min(1, (double) iter / (MAX_ITERS - 1)), a); 
   } 
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