

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ
ΣΥΣΤΗΜΑΤΩΝ

Μεταπτυχιακό Πρόγραμμα Σπουδών

«Διαχείριση Πληροφορίας και Τεχνολογίες Παγκοσμίου
Ιστού»

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΤΙΤΛΟΣ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ
“A Semi-Automatic System for Fine-tuning Binarization Algorithms”

Ονοματεπώνυμο φοιτητή:

Βέρρας Βασίλειος

Ονοματεπώνυμο Επιβλέπουσας Καθηγήτριας:

Καβαλλιεράτου Εργίνα

ΚΑΡΛΟΒΑΣΙ

ΦΕΒΡΟΥΑΡΙΟΣ, 2013

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΚΩΝ
ΣΥΣΤΗΜΑΤΩΝ

Μεταπτυχιακό Πρόγραμμα Σπουδών

Η Διπλωματική Εργασία

παρουσιάστηκε ενώπιον

του Διδακτικού Προσωπικού του

Πανεπιστημίου Αιγαίου

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

“A Semi-Automatic System for Fine-tuning Binarization Algorithms”

Βασίλειος Παναγιώτη Βέρρας

 Ονοματεπώνυμο Ονοματεπώνυμο Ονοματεπώνυμο

 Επιβλέπουσας Μέλους 2 Μέλους 3

Εργίνα Καβαλλιεράτου

Summary: In image processing a basic step in order to extract useful information

is the binarization of the image. Most binarization algorithms take a number of

parameters that affect the output of the process. Finding the best settings of a

binarization algorithm is time consuming and requires a lot of effort especially when

an algorithm depends on many parameters thus the search space is big. To address

this issue it is essential to develop a system that finds these parameters that are as

close as possible to the best parameters for a given case within an acceptable time

frame without having to run through the entire search space.

This thesis aims at developing such a system that allows the user to find the

closest to the best settings of a binarization algorithm either automatically using

simulated annealing or interactively using a user feedback framework that enables

the user to evaluate the results of image binarization. This system incorporates three

sample algorithms but it is also expandable allowing for the integration of user

developed algorithms.

Keywords: image binarization, simulated annealing, parameters, automatic,

feedback.

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

ΕΥΧΑΡΙΣΤΙΕΣ

Θα ήθελα να ευχαριστήσω την επιβλέπουσα καθηγήτρια αυτής της

διπλωματικής εργασίας κ. Καβαλλιεράτου Εργίνα για την υπομονή, την στήριξη, την

καθοδήγηση και την βοήθεια που μου παρείχε καθόλη την διάρκεια εκπόνησης της.

Θα ήθελα επίσης να ευχαριστήσω τη σύζυγό μου Ράνια για την ακούραστη

υποστήριξη της όλο αυτό τον καιρό χωρίς την οποία δεν θα ήμουν σε θέση να φέρω

σε πέρας αυτή την εργασία.

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

Table of Contents

1. Introduction .. 9

1.1 Image Binarization Problem .. 9

1.2 Scope of this thesis .. 11

2. Related work ... 13

3. The three included algorithms ... 15

3.1 Niblack ... 15

3.2 Hybrid Iterative Global Thresholding (H-IGT) .. 17

• Application of Iterative Global Thresholding... 17

• Noisy area detection ... 18

• Re-application of IGT (Local Thresholding) ... 18

3.3 Fixed Window Local Thresholding (FWLT) .. 18

4. Simulated Annealing ... 22

4.1 Detailed implementation of Simulated Annealing .. 23

5. Implementation of the system ... 27

5.1 Tools used .. 27

5.2 Main Window .. 27

5.2.1 Toolbar ... 28

5.2.2 Image Display .. 28

5.2.3 Algorithm Selection, Configuration and Application ... 28

5.2.4 Log Area ... 30

5.3 Logging... 31

6. Evaluation of the system .. 32

6.1 H-IGT on DIBCO’11 .. 32

6.2 FWLT on random document. ... 35

6.2.1 Brute Force .. 35

6.2.2 Simulated Annealing .. 36

6.3 Estimation of required GT images. .. 41

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

6.4 Comparison of different fine tuning methodologies and binarization algorithms . 44

7. Conclusion and future development.. 48

8. Appendices .. 49

8.1 Appendix A: Algorithm developer manual .. 49

8.2 Appendix B: Simulated Annealing Source Code .. 52

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

List of Figures
Figure 1. (a) Original Image, (b) Global binarization and (c) Local with W=140 10

Figure 2. Niblack Binarization (a) Original Image, (b) k= -1.0 h=15, (c) k=-1.0 h=30 (d) k=-1.0

h=50 (e) k=-1.0 h=100 ... 16

Figure 3. FWLT (a) k=70 w=25, (b) k=70 w=50, (c) k=70 w =100 ... 19

Figure 4. FWLT on Samos Historical Archive Document (a) Original, (b) k=88 w =20 20

Figure 5. Simulated Annealing flowchart .. 26

Figure 6. Main Window ... 27

Figure 7. The Toolbar ... 28

Figure 8. Image folder selection .. 29

Figure 9. Algorithm selection and configuration ... 29

Figure 10. User feedback and algorithm application .. 30

Figure 11. Log Area .. 30

Figure 12. Log file contents ... 31

Figure 13. DIBCO’11 dataset .. 34

Figure 14. Brute Force Results ... 36

Figure 15. Simulated Annealing on FWLT .. 39

Figure 16. Best (a) and worse (b) performance of FWLT using SA .. 40

Figure 17. SA on FWLT random sessions ... 41

Figure 18. Estimation of required GT images - Diagram ... 43

Figure 19. Visual results of algorithm and methodology comparison. Left images for feedback

and right images for SA. (a) for Niblack, (b) for H-IGT and (c) for FWLT 47

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

List of Tables

Table 1. Evaluation System Configuration ... 32

Table 2. H-IGT on DIBCO’11 ... 34

Table 3. Brute Force results on FWLT .. 35

Table 4. Simulated Annealing on FWLT ... 38

Table 5. Background noise images .. 42

Table 6. Estimation of required GT images - Results ... 43

Table 7. Summary of methodology and algorithm comparison .. 45

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

1. Introduction

1.1 Image Binarization Problem

Document image binarization primarily concerns the processing of historical

documents that contain important information about a person, place or event in the

past. The preservation and publishing of historical documents is of utmost

importance. Due to the fact that the storage of digital versions of the documents

needs huge storage space in order to preserve the properties of the original image, it

is not easy to distribute it through the internet. One solution is to convert the image

into a bi-level or binary image by finding and applying a threshold on the pixels of

the image. The pixels then are classified into two classes; foreground and

background. Foreground refers to pixels that belong to useful information such as

text, images and tables and correspond to the ink of the original document and is

represented in black. Background refers to the paper or other material of the original

image and is represented in white. Image binarization is the initial step of most

document image analysis and processing in order to subsequently obtain useful

information with other methods such as Optical Character Recognition (OCR) or

simply convert the document to a more appealing form without problems caused by

several degradation issues such as smear, strain, non-uniform illumination, shadows,

bleed-through (when the ink transposes from one side of the paper to the other

side) etc. The better the document is processed during this phase, the easier it is to

process it in subsequent phases and the more useful information can be

automatically extracted.

There are two approaches as far as document binarization is concerned; local

and global. The easiest approach is to apply a global threshold on the document and

decide upon this threshold. While this approach is good and adequate for

documents with good illumination and contrast, the aforementioned degradation

issues can severely affect its performance. In this case the threshold needs to be

decided and applied locally. In order to achieve this, the document is segmented

using various methods like sliding or fixed windows or by roughly estimating the

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

foreground and the background areas. Then the threshold is calculated within these

areas based on local features. Moreover, there are approaches like [1] that combine

global and local methods to achieve a better performance. The effect of a local

binarization versus a global approach is shown in Figure 1.

(a)

(b)

(c)

Figure 1. (a) Original Image, (b) Global binarization and (c) Local with W=140

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

For this demonstration a new algorithm described later in this thesis was

used with a 140X140 pixel window partitioning and a threshold of 85% of the mean

intensity used globally (case b) or locally in each window (case c). It is clear that local

binarization helped distinguishing between text and noise around the text and even

on the top right part of the image.

Most algorithms have one or more parameters that control the way the

document is processed and may heavily affect the binarization result. These

parameters usually control the global or local threshold, the size of the window used

to scan the document, the amount of the standard deviation of pixel intensity added

to the average intensity and many others. Typical examples are Niblack’s [2]

algorithm that uses a sliding window to apply a local threshold based on the mean

and standard deviation of the pixels’ intensity in the window and [1] that iteratively

processes the image globally and then based on fixed window segmentation decides

whether more local processing is required.

The number of parameters as well as the range of values for each parameter

defines the search space of the algorithm. This search space can be enormous and

consequently the time and effort required to search through it could be a limited

factor towards good binarization performance. Due to the fact that different

parameters are required for different set of images the performance of an algorithm

depends not only on its sophisticated design but also on the user’s ability to fine

tune it in a reasonable time frame.

1.2 Scope of this thesis

All things considered, this thesis aims at developing a system that drastically

reduces the time and effort needed to find the appropriate configuration of a

binarization algorithm that produce if not the best, very close to the best

binarization results for that specific algorithm and collection of documents. In

general, the system incorporates a probabilistic method called Simulated Annealing

that can be used to explore the configuration settings of an algorithm that behave

well when applied to documents categorized by degradation issues such as smear,

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

stain or low contrast or find the configuration settings that work best in most cases.

Taking all the above into account, it is obvious that the system is ideal for fine tuning

algorithms when processing large collections of historical documents where all

documents contain more or less the same degradation issues. This is true for

collections of documents were all documents were stored together and digitized

using the same method (scanner of camera). These documents suffer uniformly from

the same type and amount of degradation issues. In this case, the algorithm can be

fine tuned using manually created Ground Truth (GT) documents based on a small

number of representative documents from the collection. An estimation of the

number of documents required is given in §6.3. The GT documents can be created

based on the user’s personal preference on the quality of the resulting image. The

user for example could opt for a document with thicker strokes. The algorithm then

is tuned to adapt to the desired GT document and thus the whole collection is

processed in the same manner.

Another use of the system could be to explore the default settings of an

algorithm that is the settings that are more likely to work well under all

circumstances. This can be achieved by creating a collection of images with their

respective GT images that suffer from all possible degradation issues. Then the

settings of the algorithm can be found that produce the best overall performance.

These settings can then be used as the default setting of that algorithm.

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

2. Related work

Automatic or semi-automatic tuning of binarization algorithms has been

given limited attention to date. Badekas and Papamarkos [3] propose a Parameter

Estimation Algorithm (PEA), which can be used to detect the best values for the

parameter set of every binarization algorithm. They use edge detection evaluation to

analyze the correspondence between different binarization results obtained by the

application of an algorithm to a specific document using different parameters. They

improve on previous defined techniques [4] by applying an adaptive convergence

procedure to reduce the parameter’s ranges by estimating the best and second best

binarization result. To evaluate the results of each binarization, they estimate a

ground truth image (EGT) selecting it from a list of Potential Ground Truth (PGT)

images obtained from a technique proposed by Yitzhaky and Peli [4]. These PGT

images are produced using N images derived from different binarization techniques.

Every PGTi (0≤i≤N) is created by taking all the pixels that are classified as foreground

in at least i images. The rest is background. Then the best PGT image is designated as

EGT using ROC analysis and Chi-square test.

 Mohamed Cheriet, Reza Farrahi Moghaddam and Rachid Hedjam [5]

introduce a framework for the optimization of parametric binarization methods,

which provides the optimal values for each document image. Numerical feature

vectors for two-dimensional data are generated based on their maps obtained by

the use of Stroke Gray Level (SGL) multilevel classifier. They then combine the

statistics of various maps in a nonlinear way to produce the final feature vector.

Finally, the optimal behavior is learned using Support Vector Regression (SVR). To

evaluate the framework they used the grid based Sauvola method and Lu’s method

against the DIBCO’09 and H- DIBCO’10 datasets for comparison.

Nicholas R. Howe [6], apart from a new binarization technique, introduces an

automatic parameter tuning by means of a stability heuristic criterion that helps to

choose suitable parameter values for individual images. The technique is based on

the observation that when good parameter values are found, small changes to them

will give low variability in the binarization result. However, due to the computational

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

cost of the proposed solution, the author applies the proposed stability criterion only

to one of the two parameters of the suggested algorithm, restricting the other to

two possible values. When minimizing the first parameter, small changes to it will

result to the same behavior as far as minimizing is concerned. This can lead to a

substantial reduction in the computational cost. Moreover, two distinct values of the

second parameter, at the edges of its range, are enough to produce most of the data

required for the optimization. Although the author’s approach works well on the

proposed algorithm, it heavily depends on the specific behavior and parameters of it,

making it almost impossible to generalize the approach to other binarization

techniques. On the positive side, this approach does not depend on nor computes a

ground truth image.

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

3. The three included algorithms

The system includes three algorithms; one hybrid global-local thresholding

and two local thresholding. Fixed Window Local Thresholding (FWLT) is a new

technique created to demonstrate that even when a simple and naïve approach is

used, if tuned properly produces satisfactory and comparable binarization results.

The other two are Niblack’s algorithm [2] and a hybrid binarization technique [1] that

combines iterative global thresholding with local post-processing.

3.1 Niblack

Niblack’s algorithm uses a sliding square window over the image, centered on

a pixel, and calculates a threshold T for that pixel using the equation:

𝑇 = 𝑚 + 𝑘 ∗ 𝑠

where m is the mean intensity value of all the pixels in the window and s is the

standard deviation. k is a configuration value that along with the window property h

affects the quality of the produced image. s is denoted as:

𝑠 = ��
1

ℎ ∗ ℎ − 1
� ∗�(𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑖) − 𝑚)2

ℎ∗ℎ

𝑖=0

The window used is calculated around the pixel with a side of 2 ∗ ℎ + 1. It

does not use any pre or post-processing on the document. The system uses as initial

values for k and h, 0.6 and 25 pixels respectively as described in [7].

The algorithm’s Achilles' heel is the fact that it cannot cope with large areas

of background pixels. This is evident in Figure 2.

(a)

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

(b)

(c)

(d)

(e)

Figure 2. Niblack Binarization (a) Original Image, (b) k= -1.0 h=15, (c) k=-1.0 h=30

(d) k=-1.0 h=50 (e) k=-1.0 h=100

When a pixel is outside a distance of 15, 30, 50 or 100 pixels respectively from foreground

pixels (text) then the pixel is more likely to be misclassified as the mean and standard

deviation of the window is calculated using only background pixels. It is obvious that the

bigger the window is, the more likely it is for a pixel to be within window distance to real

foreground pixels and consequently the more likely it is to be correctly classified. However,

the bigger the window it is the slower the algorithm becomes. This problem led [7] to

introduce an adaptive Niblack that determines the areas where k and h can be applied and

background areas where all pixels are classified accordingly.

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

3.2 Hybrid Iterative Global Thresholding (H-IGT)

This approach is done in three steps:

- Application of Iterative Global Thresholding Algorithm

- Detection of “Noisy” Areas, and

- Application of Iterative Global Thresholding Algorithm to the detected

areas.

• Application of Iterative Global Thresholding

This method performs a number of iterations on the image until one of

two conditions is met. At the beginning of each iteration i the global average pixel

intensity 𝑇𝑖 is computed. Then the following steps follow:

 Subtraction of 𝑇𝑖 from each pixel.

 The grayscale histogram is stretched so that the remaining pixels are

distributed in all the grey scale tones.

When either |𝑇𝑖 − 𝑇𝑖−1| < 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 (𝑡𝑐) or a given number

of iterations 𝑖 is met the procedure stops and the resulting image is produced by

turning all non white (1) pixels to black (0). Normally, 𝑡𝑐 will occur before 𝑖 is met.

Then, 𝑡𝑐 controls the number of iterations over the image. Lower values of 𝑡𝑐 results

in more iterations applied and hence more pixels classified as background resulting

in thinner strokes with less noise. The formula used for the subtraction that provides

the after-subtraction and before-equalization image 𝐼𝑠 is:

𝐼𝑠(𝑥,𝑦) = 𝐼𝑖(𝑥,𝑦) − 𝑇𝑖 + 1

The relation used for the histogram stretching is:

𝐼𝑖+1(𝑥, 𝑦) = 1 −
1 − 𝐼𝑠(𝑥,𝑦)

1 − 𝐸𝑖

where 𝐼𝑠 is given by the previous equation and 𝐸𝑖 is the minimum pixel value

in the image 𝐼𝑠 during the 𝑖𝑡ℎ repetition, just before the histogram stretching. After

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

every repetition, more pixels move to the background thus creating a cleaner image.

As suggested in [1], an upper limit of 20 is posed for 𝑖.

• Noisy area detection

At this stage the image is divided into segments (𝑆), of fixed size 𝑛 ∗ 𝑛. In

each segment, the frequency of black pixels is calculated. The segments that satisfy

the following criterion are, then, selected as:

𝑓(𝑆) > 𝑚 + 𝑘 ∗ 𝑠

where 𝑓(𝑆) is the frequency of the black pixels in the segment 𝑆 while 𝑚 and 𝑠 are

the mean and the standard deviation of the black pixel frequency of the entire page,

respectively. The parameter 𝑘 in the formula determines the sensitivity of the

detection method. The higher the 𝑘, the fewer segments will be detected.

• Re-application of IGT (Local Thresholding)

The IGT method is then applied to the selected segments of the document.

The iterative procedure stops when either |𝑇𝑖 − 𝑇𝑖−1| < 𝑡𝑐 is satisfied or the

number of iterations required in the initial global thresholding is exceeded.

It is obvious that the performance of the H-IGT algorithm depends on the

value of the parameter 𝑘 and the size 𝑛 of the window used in local thresholding as

well as on the termination criterion 𝑡𝑐. Despite what is suggested in [1], the system

uses as initial values for 𝑘, 𝑛 and 𝑡𝑐, 2.5, 50 pixels and 0.4 respectively. These

settings were provided by the author based on new unpublished experiments on the

algorithm.

3.3 Fixed Window Local Thresholding (FWLT)

This algorithm is a simple and fast local binarization method that like H-IGT

uses a fixed square window to segment the image and decides on the threshold

based on a given percentage of the mean intensity value of all the pixels in the

window:

𝑇 = 𝑘 ∗ 𝑚

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

where T is the calculated threshold and k is the given percentage. Apart from k, the

quality of the produced image depends on the window parameter w as in previous

algorithms. The system uses as initial values for k and w, 82 and 50 pixels

respectively.

Despite the simplicity of the algorithm it has certain advantages especially

when compared to Niblack. Using a fixed window makes the algorithm faster. In fact

the bigger the window is, the faster the algorithm performs. On the other hand a

fixed window means that the algorithm cannot adapt to each pixel individually as in

the case of a sliding widow where the pixel to be classified lies at the center of it. But

as was demonstrated in Figure 2 the best results were achieved in bigger windows

resulting in very slow performance from the algorithm. The application of the

algorithm in the same document as in Figure 2 is show in Figure 3.

(a)

(b)

(c)

Figure 3. FWLT (a) k=70 w=25, (b) k=70 w=50, (c) k=70 w =100

Another advantage of FWLT is that it can correctly classify big background

areas even if they consist of pure black pixels. This is demonstrated in Figure 4.

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

(a)

(b)

Figure 4. FWLT on Samos Historical Archive Document (a) Original, (b) k=88 w =20

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

As long as k is bigger than the biggest text stroke in the document the

algorithm will correctly classify big black areas as background without harming useful

text foreground pixels.

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

4. Simulated Annealing

Simulated Annealing (SA) is a metaheuristic probabilistic optimization

method used to exploit the minimum (or maximum) of a given function that depends

on many parameters (combinatorial optimization). Osman and Laporte in [8]

describe metaheuristic methods as follows:

“A metaheuristic is formally defined as an iterative generation process which

guides a subordinate heuristic by combining intelligently different concepts for

exploring and exploiting the search space, learning strategies are used to structure

information in order to find efficiently near-optimal solutions.”

Simulated Annealing was first introduced by Kirkpatrich, Gelatt and Vecchi [9]

who developed the method based on previous work from Metropolis et al. [10].

Metropolis et al. described the behavior of molecules during the cooling phase of

liquids or metals in metallurgy (annealing phase) from moving freely at high

temperatures until they find equilibrium at a lower temperature. Kirkpatrich, Gelatt

and Vecchi introduced a method that simulates this behavior.

Most minimization strategies find the nearest local minima by simply

accepting every solution that improves the best solution found so far. Simulated

Annealing avoids local minima by probabilistically accepting solutions that do not

improve the best solution so far. The process begins from an initial state with some

random or default parameters. Then these parameters are given a small random

displacement. The overall difference of energy (ΔΕ) from the previous step is then

computed. Our goal is to find the lowest possible energy state so if ΔΕ <= 0 the new

state is accepted and a new iteration begins based on the new energy state. If not

then the new state is probabilistically accepted or rejected based on a random

number generated between 0 and 1 and the current temperature. This allows for

parameter space exploration at high temperatures. This exploration is restricted as

the temperature drops. This enables the system to go to higher energy states

avoiding local minima that would otherwise trap the process. The slower the process

proceeds, the higher the probability that this final energy state is the lowest

between all the energy states that the system can have.

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

It is straightforward that this method can be used in document binarization

since it is a combinational optimization problem as almost all algorithms depend on

one or more independent parameters. The energy of the system can be computed

based on an evaluation measure of the binarization result at each step. Our system

uses an implementation of SA taken from Prokopiou K. [11] published as an open

source project (available at https://github.com/kprokopiou/RuLieR) who

implemented it in a system that optimizes page rule-line removal algorithms. This

implementation was modified and optimized to work in our system.

4.1 Detailed implementation of Simulated Annealing

The process starts at an initial state where the default algorithm parameters

are used unless overridden by the user. The system allows to start from every

parameter settings allowed by the algorithm. For the energy calculation the system

compares the produced by the algorithm binarized image to a Ground Truth (GT)

image. For the comparison a widely used evaluation measure (F-Measure or

Harmonic Mean) is used. F-Measure is defined as:

𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

 where:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

and

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑇𝑃 stands for True Positive is the total number of foreground (black) pixels in

the binarized image that are also foreground in the GT image.

𝐹𝑁 stands for False Negative is the total number of background (white) pixels

in the binarized image that are foreground in the GT image.

𝐹𝑃 stands for False Positive is the total number of foreground (black) pixels in

the binarized image that are background in the GT image.

https://github.com/kprokopiou/RuLieR�

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

Precision can be seen as a measure of quality as it answers the question

“How many of the foreground pixels identified are actually foreground?” and recall a

measure of quantity as it answers the question “How many of the total foreground

pixels were correctly identified?”. The F-Measure combines precision and recall in an

even way that gives a better representation of the similarity between the GT image

and the produced binarized image.

Our goal is to maximize F-Measure meaning that higher F-Measure leads to

lower energy states. Maximum value for F-Measure is 1 or 100% when all pixels are

correctly predicted thus the binarized image is identical to the GT image.

As in [11] the calculation of the temperature is based on Press et al. [12] and

is given by the following formula:

𝑇 = 𝑇0 ∗ [1 − �𝑡 𝑀𝐴𝑋_𝐼𝑇𝐸𝑅𝑆� �]𝑎

where 𝑇0 is the initial temperature, 𝑡 is the current iteration, 𝑀𝐴𝑋_𝐼𝑇𝐸𝑅𝑆 is the

maximum number of iterations allowed and 𝑎 is a constant number that can be

usually set to 1, 2 or 4 depending on the position of the relative minima. Large values

of 𝑎 will spend more time at lower temperatures. The system uses 𝑇0 = 100,

𝑀𝐴𝑋_𝐼𝑇𝐸𝑅𝑆 = 45 and 𝑎 = 1.

The system calculates the energy of the initial state using the default settings

as described above. Then a new parameter set is calculated by randomly setting one

parameter taken from a small neighborhood around the old value. The

neighborhood is calculated as follows:

• First the half range of the neighborhood is calculated using the

following equation:

ℎ𝑎𝑙𝑓𝑅𝑎𝑛𝑔𝑒 =
(𝑖𝑛𝑖𝑡𝑅𝑎𝑛𝑔𝑒 ∗ 𝑘3)

3

where 𝑘 is a loop counter starting from 1 and increased by 1 every time a

new solution is rejected and 𝑖𝑛𝑖𝑡𝑅𝑎𝑛𝑔𝑒 is the initial range for that specific

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

parameter. In that way the neighborhood grows bigger in case the new energy state

is not accepted allowing for wider spectrum exploration.

• Then the lower and upper bound of the neighborhood is calculated:

𝑙𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 − ℎ𝑎𝑙𝑓𝑅𝑎𝑛𝑔𝑒

𝑢𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 + ℎ𝑎𝑙𝑓𝑅𝑎𝑛𝑔𝑒

• A check is performed to align the new borders to the initial range of

the parameter in case they exceed it. Finally, the new value is calculated as follows:

𝑛𝑒𝑤𝑉𝑎𝑙𝑢𝑒 = 𝑙𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑 + 𝑟𝑎𝑛𝑑𝑜𝑚𝐷𝑜𝑢𝑏𝑙𝑒 ∗ (𝑢𝑝𝑝𝑒𝑟𝐵𝑜𝑢𝑛𝑑 − 𝑙𝑜𝑤𝑒𝑟𝐵𝑜𝑢𝑛𝑑)

Using the new parameter set, a new binarized document is produced and its

energy is calculated using F-Measure as described. The difference between the old

and the new energy 𝛥𝛦 is then calculated. If 𝛥𝛦 ≤ 0 then the new state is accepted

and a new iteration begins. If 𝛥𝛦 > 0 then the new state is not discarded but a

probability 𝑃 is calculated based on the following formula:

𝑃 = �
𝑇
𝑇0
� ∗ 𝑒

−𝛥𝛦
𝛵

where 𝑇 is the current temperature and 𝑇0 is the initial temperature. If 𝑃 is bigger

than a random number generated between 0 and 1 then the new state is accepted

otherwise the old state is retained and a new iteration begins. When either the

maximum number of iterations 𝑀𝐴𝑋_𝐼𝑇𝐸𝑅 is reached or the lowest possible energy

is achieved the process terminates.. In Figure 5 below the flowchart of the process is

depicted.

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

Figure 5. Simulated Annealing flowchart

Initialize:
initState, initRange

Set Best State and iteration counter:
S_BEST = initState

t = 0

t < MAX_ITERS
&& e >

BEST_ENERGY
Return S_BEST

Calculate new parameter

NO

Calculate energy
difference ΔΕ between
previous (e) and new

Energy (eNew)

ΔΕ <= 0 Accept new State s=sNew
and Energy e=eNew

eNew <
S_BEST.getEnergy()

New Best State S_BEST=s

YES

Calculate new Probability P

YES

NO

P > random
double [0,1]

Accept new State s=sNew
and Energy e=eNew

YES

Calculate new Temperature T

For all
parameters

END FOR

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

5. Implementation of the system

5.1 Tools used

The programming language used to implement the system is JavaTM [13] in

particular JavaTM Standard Edition Development Kit (JDKTM) version 7 update 7 [14]

and later versions. Java was chosen due to the fact that it is popular, easy to use,

object oriented, expendable and platform-independent, making it the best candidate

for research purposes without any limitations and cost. It allows you to create

modular programs and reusable code. Moreover, there is a number of free existing

libraries written in Java for image I/O, display, processing etc saving the developer

from important development time. Most of the image handling is done by the Java

2D API which is incorporated into the JDKTM. However, in order to support more

image formats such as TIFF, the Java Advanced Imaging v1.1.2 [15] is used.

For the development of the system NetbeansTM 7.1.1 Integrated

Development Environment is used freely available at [16].

5.2 Main Window

The Extendable Image Binarization Tool’s main window (fig.1) consists of four

areas; the toolbar, the image display area, the algorithm selection, configuration and

application area and the log area.

Figure 6. Main Window

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

5.2.1 Toolbar

The toolbar area contains the Fit-To-Window button that fits the image

to the image display area and the Simulated Annealing panel.

Figure 7. The Toolbar

The Simulated Annealing panel is responsible to load the Ground Truth

(GT) and Original image folders and start a new session. In order for the “start”

button to be activated, these folders must contain the same number of image files.

There are no naming conventions for the images in the folders. However, the

alphabetical order of the returned image lists must hold the GT images of the

corresponding Original images at the same index. Once the “start” button is

activated a new simulated annealing session can be started. The initial configuration

settings are taken from the current settings of the selected algorithm. During the

session the “start” button is deactivated and the “stop” button is activated, enabling

the user to terminate the session at any time before it is completed. During the

session useful information is displayed on the Log Area.

5.2.2 Image Display

The image display area displays the selected image or the produced

image after a “Binarize” action is performed. The user can zoom in/out using the

mouse scroll button and pan by left click, hold and drag. Note that every time a

“Binarize” action is performed the binarization is done on the original image and the

resulting image is displayed.

5.2.3 Algorithm Selection, Configuration and Application

This area contains from top to bottom the following subareas:

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

• Image folder selection.

Figure 8. Image folder selection

In this subarea the user can designate a folder that contains the

images for binarization. This can be done by left clicking on the “Load Folder” button

and browsing through the desired folder from the popped-up file selection dialog.

Once the folder is selected, the list above the button is populated with all the images

the folder contains. The user can then select individual images from the list by left

clicking on the image name. The image then is displayed on the image display area.

• Algorithm selection and configuration.

Figure 9. Algorithm selection and configuration

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

In this subarea the user can select the desired binarization algorithm

from the drop-down list. Once the algorithm is selected the appropriate algorithm

configuration is displayed with the specific algorithm settings.

• User feedback and algorithm application.

Figure 10. User feedback and algorithm application

In this subarea the user can apply a binarization on the selected image

based on the current settings and provide a feedback on the results of the

binarization. The user has three options; under, ok and over. Under should be

selected when the result of the binarization contains noise more than desired. Over

should be selected when the binarization produces a “white” image with part of the

valuable information missing. Ok should be selected when the result is satisfactory.

Based on the implementation of each algorithm, selecting one of the feedback

buttons can result in the automatic reconfiguration of the algorithm towards new

settings that should produce images closer to the desired level of binarization. The

user, however, can override this proposal and fine tune the algorithm manually.

Once the correct settings are determined the user can apply the algorithm to all the

images in the selected folder by selecting the “Binarize All” button. The images

produced are stored in the same folder with the same name extended with an

abbreviation of the current name and settings of the algorithm used. Log files with

the results of each step are produced for further processing. The log file framework

is explained in the following section.

5.2.4 Log Area

Figure 11. Log Area

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

The Log text area is used to display useful information regarding the

process of each Simulated Annealing process. In particular the current algorithm

settings as well as the best PERR and the Difference of Energy (ΔΕ) of each

binarization are displayed. At the end of the session a summary of the best settings

is displayed.

5.3 Logging

The first time the application starts, a folder called “Log” is created in the

same path the application was started from. This folder contains all the log files

produced by the application. Each time a new algorithm is selected a new log file is

created with the name of the algorithm and the current date and time. The log file

(fig.2) is a comma separated value (csv) file with a header containing the image

name, the algorithm used, the number of tries, the names of the different settings

and the feedback, and one line for every user feedback input with the corresponding

values.

Figure 12. Log file contents

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

6. Evaluation of the system

The evaluation of the system is done based on four pylons. The capabilities of

the system are shown applying the Simulated Annealing (SA) process to the DIBCO

2011 dataset using the Hybrid-Iterative Global Thresholding algorithm. The goal is to

show that the system can improve the binarization results in comparison to the

default settings of the algorithm. Then the ability of the system to consistently find

very close to the best configuration settings is demonstrated by finding FWLT’s best

settings for a single document using Brute Force and then comparing the

binarization results and the total time taken to the results obtained using multiple SA

sessions. Moreover, an attempt is made to estimate the number of GT images

required for the SA process to provide settings that can be applied to the entire

dataset with the best results. Finally, a comparison is done between all

methodologies and algorithms used in this system.

 The configuration of the system that the evaluation was performed on is shown

below:

System Type Notebook

Processor AMD C-60 APU with Radeontm HD

Graphics 1.00 GHz

Installed Memory (RAM) 4.00 GB

Operating System Windows 7 Home Premium SP1 64-bit

Java Runtime Environment (JRE) Javatm SE RE build 1.7.0-b147

Table 1. Evaluation System Configuration

The evaluation was done on a low end machine to demonstrate that ability of the

system to run on these kinds of machines.

6.1 H-IGT on DIBCO’11

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

 DIBCO’11 dataset consists of a collection of eight (8) handwritten documents

and eight (8) printed documents with their respected Ground Truth (GT) documents.

The original documents are shown below:

 HW 1 HW 2 HW 3 HW 4

 HW 5 HW 6 HW 7

 HW 8

 PR 1 PR 2 PR 3

 PR 4 PR 5 PR 6

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

 PR 7 PR 8

Figure 13. DIBCO’11 dataset

As described in 2.2.2 the H-IGT algorithm depends on three parameters;

sensitivity 𝑘, window size 𝑛 and termination criterion 𝑡𝑐 with default settings 2.5, 50

and 0.4 respectively as described in §3.2. Using these setting the algorithm was

applied on the dataset and achieved an F-Measure of 81.3745%. In order to

demonstrate that the system can find better settings, an SA session was performed

on the dataset with the respective GT documents. The results are shown on the

following table.

initial

parameters

time

(secs)

best parameters

found

of

binarizations

Achieved

F-Measure

Improvement

(as percentage of the

default

F-Measure)

k=2,5 n=50

tc=0,4
1317

k=2,7291 n=65

tc=0,1251
2144 82,4114% 1,2743%

Table 2. H-IGT on DIBCO’11

It is straightforward that the system using SA improved the performance of

the algorithm. Note that the session started from the default settings.. Another thing

that is apparent from this test is that the designers of the algorithm have chosen the

default settings carefully to work well on every type of document such as the

DIBCO’11 dataset. The above test could very well lead to a change on the default

settings of the algorithm since the improvement is considerable and the new settings

are quite different than the default ones especially the termination criterion tc that

leads to more iterations during the global thresholding phase.

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

6.2 FWLT on random document.

The second stage of evaluation was performed on the Fixed Window Local

Thresholding (FWLT) algorithm. A single document was randomly chosen from the

DIBCO’11 dataset. The reason a single document was chosen and not the entire

dataset is because it would take considerably more time to explore the search space

of the algorithm using Brute Force. Moreover, the scope of the test is to

demonstrate the ability of SA to find very close to the best configuration settings in a

fraction of the time needed to explore the entire search space. The document used

is HW4 with its respective Ground Truth.

6.2.1 Brute Force

The results of using Brute Force to explore the entire search space are

shown below:

time

(secs)

best

parameters

found

of

binarizations

Best

F-Measure

3556 k=79 w=15 15096 81,9694%

Table 3. Brute Force results on FWLT

The process took nearly an hour to finish although the range of the

configuration settings of the algorithm was restricted for k to values between 50%

and 100% and for w from 5 to 300 pixels. In addition to this, k was specified as

integer although it could be specified as double. This gives only 51 values in the given

range of the setting. As mentioned above the goal is to evaluate the performance of

SA in comparison to Brute Force and not to find the best settings for the algorithm.

As it is depicted in Figure 11 using k as double would not give us a better resylt on

the best settings. It is obvious that a more complex algorithm with a bigger search

space and a bigger dataset would require a much greater deal of time to explore the

entire dataset. The graphical representation of the results is shown on Figure 6.

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

Figure 14. Brute Force Results

6.2.2 Simulated Annealing

In order to demonstrate the ability of SA to consistently find very good

results, 100 SA sessions were performed on the same document using the

algorithm’s default settings (k=82, w=50) as initial settings. The results are shown

below:

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

time
(secs)

best parameters
found

k w
of binarizations Achieved F-Measure

Difference
(as percentage of the best

F-Measure)

1 14 77 49 95 0,791566896 -3,43%
2 14 79 38 99 0,798197315 -2,62%
3 14 81 37 96 0,791214025 -3,47%
4 15 74 35 101 0,815865061 -0,47%
5 15 75 35 103 0,815575093 -0,50%
6 15 74 43 99 0,813115408 -0,80%
7 15 69 43 103 0,811832029 -0,96%
8 15 78 35 99 0,811630354 -0,98%
9 14 75 44 98 0,803878171 -1,93%

10 15 71 37 102 0,814529398 -0,63%
11 15 71 51 105 0,804840846 -1,81%
12 15 80 15 101 0,818815261 -0,11%
13 15 77 25 104 0,817384322 -0,28%
14 15 74 35 102 0,815865061 -0,47%
15 15 74 50 101 0,803003842 -2,04%
16 15 80 15 101 0,818815261 -0,11%
17 14 81 14 99 0,812979398 -0,82%
18 15 75 34 101 0,81372765 -0,73%
19 15 73 35 105 0,815648203 -0,49%
20 14 82 33 98 0,79077677 -3,53%
21 14 75 51 97 0,797672422 -2,69%
22 14 79 43 95 0,800313702 -2,36%
23 15 78 21 99 0,818958035 -0,09%
24 15 75 40 99 0,804407061 -1,86%
25 14 77 37 99 0,808043876 -1,42%
26 14 79 41 97 0,795937423 -2,90%
27 15 73 37 101 0,81442647 -0,64%
28 14 79 43 95 0,800313702 -2,36%
29 14 78 51 94 0,786401024 -4,06%
30 15 77 21 103 0,818905676 -0,10%
31 16 77 17 107 0,818193054 -0,18%
32 13 84 37 95 0,768963601 -6,19%
33 15 75 35 101 0,815575093 -0,50%
34 14 77 22 99 0,815256644 -0,54%
35 13 82 50 91 0,763929921 -6,80%
36 13 79 51 93 0,78122015 -4,69%
37 14 80 26 98 0,798251475 -2,62%
38 15 73 35 102 0,815648203 -0,49%
39 15 79 35 102 0,808816169 -1,33%
40 15 80 15 104 0,818815261 -0,11%
41 14 77 28 98 0,809463422 -1,25%
42 15 73 43 102 0,814177134 -0,67%
43 15 74 35 104 0,815865061 -0,47%
44 15 73 43 102 0,814177134 -0,67%
45 14 73 63 100 0,791564757 -3,43%
46 14 71 50 100 0,806810397 -1,57%
47 15 74 35 105 0,815865061 -0,47%
48 14 68 63 98 0,79685136 -2,79%
49 14 77 53 97 0,78165874 -4,64%
50 14 73 50 99 0,804136277 -1,90%
51 14 72 56 98 0,794077054 -3,13%
52 14 78 42 97 0,804724198 -1,83%
53 14 80 37 95 0,797424781 -2,72%
54 13 82 50 91 0,763929921 -6,80%
55 14 72 60 100 0,793290403 -3,22%
56 15 74 35 107 0,815865061 -0,47%
57 15 74 35 101 0,815865061 -0,47%
58 15 74 41 103 0,804515986 -1,85%
59 15 73 50 101 0,804136277 -1,90%
60 14 78 35 99 0,811630354 -0,98%
61 15 78 34 101 0,810484573 -1,12%
62 14 83 34 95 0,788950594 -3,75%
63 14 75 57 96 0,785282334 -4,20%
64 14 69 73 100 0,788482571 -3,81%

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

Table 4. Simulated Annealing on FWLT

65 14 79 35 99 0,808816169 -1,33%
66 15 71 62 101 0,796406713 -2,84%
67 15 74 35 101 0,815865061 -0,47%
68 14 77 50 97 0,793871244 -3,15%
69 16 76 25 108 0,817359929 -0,28%
70 15 70 43 101 0,813161624 -0,80%
71 15 76 35 101 0,815104426 -0,56%
72 15 72 62 101 0,795988058 -2,89%
73 15 73 35 103 0,815648203 -0,49%
74 14 77 42 98 0,807352284 -1,51%
75 14 75 35 101 0,815575093 -0,50%
76 15 70 50 103 0,807485323 -1,49%
77 14 70 51 100 0,804799318 -1,82%
78 15 77 21 103 0,818905676 -0,10%
79 14 78 15 100 0,81906454 -0,08%
80 14 78 49 95 0,78772001 -3,90%
81 13 82 50 91 0,763929921 -6,80%
82 14 74 35 100 0,815865061 -0,47%
83 13 82 50 91 0,763929921 -6,80%
84 13 82 50 91 0,763929921 -6,80%
85 13 81 50 92 0,771342636 -5,90%
86 15 79 35 103 0,808816169 -1,33%
87 15 75 36 101 0,81315282 -0,80%
88 13 82 50 91 0,763929921 -6,80%
89 14 79 34 95 0,807643118 -1,47%
90 15 68 50 103 0,806344845 -1,63%
91 14 74 37 101 0,813643423 -0,74%
92 13 76 72 95 0,770462473 -6,01%
93 14 78 35 97 0,811630354 -0,98%
94 14 78 37 99 0,804848113 -1,81%
95 14 77 86 94 0,77094871 -5,95%
96 14 71 45 97 0,804495663 -1,85%
97 14 77 43 98 0,806753645 -1,58%
98 15 69 50 100 0,807657435 -1,47%
99 14 79 42 94 0,80098243 -2,28%

100 15 74 43 103 0,813115408 -0,80%

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

Figure 15. Simulated Annealing on FWLT

The results show that SA, as a probabilistic method, is unlikely to find the best

overall solution especially in cases where the search space is enormous. However,

the performance achieved is very close to the best settings. In particular the worst

performance from SA came when the method could not improve from the default

parameters that give a performance of 0,763929921. Figure 12 indicates that with a

possibility of 89%, SA can find a solution within 5% of the best solution. In Figure 13

the produced binarized images of HW04 are shown for (a) the best settings found

with BF and (b) the worse settings found with SA.

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

 (a) (b)

Figure 16. Best (a) and worse (b) performance of FWLT using SA

 The great benefit comes from the time and number of binarizations required

to achieve that result. On average it took less than 15 seconds for each session in

comparison to 3556 seconds for the Brute Force; an improvement of 99,6%! In

addition to this, the result was achieved with less than 100 binarizations on average

a much smaller figure than Brute Force’s 15096. Taking into account that the search

space was significantly reduced to expedite the evaluation, the benefit of the use of

Simulated Annealing is straightforward. The corresponding graphical representation

of four random sessions is shown below:

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

Figure 17. SA on FWLT random sessions

The difference between the above graphs and Figure 11 is visually evident. The

SA process spends most of its time in the top area of the diagram within the area

where the best performance of the algorithm is achieved. There are also scattered

points in the periphery of that area indicating the effort of the SA process to avoid

being locked in local minima.

6.3 Estimation of required GT images.

As mentioned in §1.2, when processing a collection of documents, only a small

number of GT images is needed to run an SA session and then apply the settings

found to the rest of the collection. Normally, if the GT images are not given, the user

has to spend some time creating them with the aid of a common image

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

manipulation application. This time spent is a good investment especially when large

collections of images have to be processed. The question that arises is: “How many

images are required?” In theory when a single image is used the SA process provides

the best settings for that image only. If the image is chosen carefully to represent

most if not all image degradations in the collection or the collection consists of

images that uniformly have the same degradation issues then the settings found for

that image will be good also for the collection. However, the more GT images you

use the better the settings will fit for the collection.

In order to explore the number of images required, beyond which no significant

improvement is made, a test was conducted using a subset of 70 images from the

artificial database of Stathis P., Kavallieratou E. and Papamarkos N. [17] with its

respective GT images. The subset was created taking images that suffer from the

same type of degradation issues from the maximum intensity collection. The images

taken are those created using background noise images 4, 5, 7, 9, 10, 11 and 15 from

the collection. The main problems that these images suffer from are described in the

following table:

Document Problem(s) Resolution

4 ink seepage, stains, strains 1188x889

5 stains, strains, stripes 1218x1405

7 uneven illumination, stains 1701x2340

9 uneven illumination, stains 2552x3509

10 background variation, stains 2552x3510

11 background variation, stains 2507x3510

15 background variation, stains 949x595

Table 5. Background noise images

An SA session was run using one random image at the beginning and subsequent

sessions adding one image at a time. The images added to the first image where

chosen properly in order to represent different background noise. The algorithm

used was the FWLT. The settings found on each session were applied to the entire

collection and the results obtained were compared to those of the respective SA

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

session. The test terminated when the results converged and there was no

significant improvement. Only six images were used overall for the SA sessions. The

images used in the order they were used are 3_11.tif, 2_4.tif, 10_15.tif, 8_10.tif,

7_5.tif and 4_7.tif. There was no need to add an image with background noise 9

since the results converged earlier. The results are shown in the following table:

Documents Used SA Collection

1 0,999992773 0,864746979

2 0,991293602 0,931140304

3 0,976368426 0,942449619

4 0,95089029 0,940011457

5 0,960095792 0,95414573

6 0,96509773 0,948460735

Table 6. Estimation of required GT images - Results

The values depicted above are the F-Measure achieved. The convergence of the

results is evident in the following diagram:

Figure 18. Estimation of required GT images - Diagram

 After the third image, the settings found produce virtually the same results

in the collection despite the fact that the convergence of the two lines is done in the

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

fourth image. In the diagram above one can observe that the SA process achieved an

F-Measure of almost 1 (0.999992773) for only one image. This indicates both the

capabilities of the binarization algorithm (FWLT) and the SA process. As expected, as

more images are added to the GT set, the SA process produces worse results for the

GT set as the settings found now are not fit for each image independently but for all

the images together. This is also reflected on the Collection line. As more images are

added to the GT set, the settings found are more fit for the entire collection and not

for individual images.

This test showed that for an almost uniform database as the one used, four

(4) images are needed to be converted to GT images. The exact number of images

needed for other collections depend on the specific characteristics of each collection

but in any case, if chosen properly, this figure should be around what was found

above.

6.4 Comparison of different fine tuning methodologies and binarization

algorithms

Apart from Simulated Annealing the system implements a feedback

mechanism that facilitates the manual process of fine tuning a binarization algorithm

as described in §5.2.3.3. A comparison test was performed for all three implemented

algorithms using both SA and feedback mechanisms and comparing the results to the

best possible results taken for each algorithm using Brute Force were applicable. In

order to expedite the test, especially for Niblack’s algorithm, only one image was

used; the HW4 from DIBCO ’11. This is the same image used in §6.2 and therefore

the results obtained for FWLT could be reused. Another reason for using only one

image was the fact that the feedback manual process gets complicated as a process

when more images are added since it is harder for the user to assess the average

results of a binarization in different images. This happens because, as mentioned in

§1.1, different settings may work better for an image and worse for another image in

comparison to previous settings and therefore the user cannot judge easily if an

improvement was made. It is obvious that in case many images are required the SA

process is the only way to go in order to fine tune an algorithm.

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

As mentioned above, a brute force was also run for comparison reasons.

Unfortunately, this was not possible for Niblack since a BF would require roughly 21

days to be completed! The overall results are depicted in the following table:

Methodology Repetitions initial
parameters

Time
(secs) Best parameters found # of

binarizations F-Measure

Difference
(as

percentage
of the best

F-
Measure)

Precision Recall

NIBLACK

feedback 24 k=0.0 w=15 ~5300 k=-1.7 w =100 24 0,768856669 - 0,944237 0,648421

SA 1 k=-1.0
w=95 18880 k=-1.4 w =92 99 0,790886118 - 0,868777 0,725813

brute force - - ~21
days - - - - - -

H-IGT

feedback 25 k=2,5 w=50
tc=0,4 ~750 k=1,0 w=100 tc=0,05 25 0,755667067 -1,65% 0,876994 0,66383

SA 1 k=2,5 w=50
tc=0,4 48 k=2,0 w=51

tc=0,24596588283675552 142 0,755155669 -1,71% 0,836134 0,688477

brute force 1 - 170244 k=1,0 w=62 tc=0,3 644930 0,768324504 - 0,793224 0,74494

FWLT

feedback 24 t=82 w=50 ~720 k=52 w=300 24 0,729080632 -11,05% 0,915628 0,605681

SA 1 t=82 w=50 19 t=75 w=35 102 0,815575093 -0,50% 0,860407 0,775184

brute force 1 - 3556 k=79 w=15 15096 0,819694245 - 0,877977 0,768668

Table 7. Summary of methodology and algorithm comparison

It is interesting to point out that, although the feedback methodology

achieves worse or equal to the SA results, in terms of precision it is always the best

method. During the feedback processes, the goal was to achieve the best image

possible. This is subject to user interpretation. An effort was made to strike a balance

between the text stroke and the amount of noise in the background. This led to texts

thinner than the Ground Truth’s text and hence big False Negative (FN) and lower

recall. On the other hand the noise was minimized in comparison to SA which

accounts for lower FP and consequently better precision. These results are visually

evident in the following figures:

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

 (a)

 (b)

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

 (c)

Figure 19. Visual results of algorithm and methodology comparison. Left images for

feedback and right images for SA. (a) for Niblack, (b) for H-IGT and (c) for FWLT

This comparison shows that a user with good knowledge of the way an

algorithm works may reduce the search space considerably and find a good solution

fast. However, even this fact requires from the user to invest time in trial and error

process that takes a lot of time especially for algorithms like Niblack’s that could take

minutes to binarize an image. On the other hand, the SA process requires only the

time to load the folders for the original and the GT images and then start the

process. In addition to this, the time to create the GT images should be considered

which in any case, as shown in §6.3, is small as it only requires a small number of

images. Moreover, it is a task that has to be done once for every collection.

To sum up, if the task is to binarize large collections of images, the only

feasible solution is to use the Simulated Annealing methodology.

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

7. Conclusion and future development.

In this thesis a semi-automatic system was developed that reduces the time

and effort spent to fine tune binarization algorithms. The system incorporates a

metaheuristic probabilistic optimization method called Simulated Annealing that is

used to explore the search space of a binarization algorithm. This method is used in

combinational optimization in order to find, with high probability, a good solution for

a difficult multidimensional problem. A manual methodology for fine tuning

binarization algorithms that is based on user feedback was also included. Three

binarization algorithms were incorporated that were used for the evaluation of the

system. Nevertheless, the system was designed so that it can be extended with the

addition of new, user developed, algorithms using a trivial interface.

During the evaluation of the system its ability to apply SA on the image

binarization problem was demonstrated successfully both in comparison to default

and best algorithm settings that were found using a brute force method. In addition

to this, the number of Ground Truth images required for an SA session to provide

results applicable to the entire dataset was explored. This led to the conclusion that

for a big dataset no more than 5 GT images are required. Finally, a comparison of

both SA and user feedback is done for all algorithms in respect to a Brute Force

approach were applicable.

The system is already expendable allowing for new algorithms to be installed

by means of a simple interface. In the future this could also be done for the

optimization method. Along with Simulated Annealing the user could create and

install into the system custom methods. Then the user could choose the desired

method and prior to starting the optimization session. Also some functionality could

be implemented to assist the user in creating the Ground Truth images without

having to open them in an image manipulation program. This could be done simply

by clicking and inverting pixels on the image from foreground to background and

vice versa.

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

8. Appendices

8.1 Appendix A: Algorithm developer manual

The application is designed to accommodate for the integration of new

algorithms. This is done through the use of a service provider interface (spi) that

allows the application to load new jar files and populate the algorithm list. A

developer that desires to add a new algorithm needs to implement the

ICSDAlgorithm interface. The only prerequisite for this implementation class is to

have a zero-argument constructor and to implement the following methods:

• public BufferedImage binarize(BufferedImage input);

This method is the main method of the algorithm. The method provides

the developer with a BufferedImage and expects a new BufferedImage that should

be the binarized version of the image based on the current settings. The new image

is displayed on the image display area. Inside this method the developer can

implement the details of the new algorithm.

• public JPanel getConfigurationPanel();

The developer has to provide a JPanel with the visualization of the

algorithm settings. If the algorithm has no settings then an empty JPanel should be

returned.

• public String getConfigurationDescription();

The developer has to provide an abbreviated description of the current

settings of the algorithm. For instance if the settings are window size and threshold

the returned string could be “NiBlack_W30_T85”. This is the text that is appended to

the image filename when a “Binarize All” action is performed.

• public ICSDAlgorithmParameter[] getParameters();

The developer has to provide an array of all configuration attributes of

the algorithm e.g Threshold.

• public boolean setParameterValues(ICSDAlgorithmParameter[]

parameters);

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

• public boolean setParameterValues(Number[] newValues);

• public boolean setParameterValue(int index, Number newValue,

boolean updatePanel);

Whenever these methods are called, a new set of parameters or a single

parameter is provided respectively.

• public Map<String, String> getConfigurationMap();

The developer has to provide a map of all the configuration setting

names as keys along with the setting values as values. This map is used for logging.

• public void resultOK(); public void resultUnder(); public void

resultOver();

These methods are called whenever a user feedback “OK”, “Under” or

“Over” action is performed respectively. It is up to the algorithm developer to decide

if there is any action to be taken. Normally for “Under” or “Over” the developer

should suggest new settings towards the desired binarization level.

• public String toString();

This method should return the name of the algorithm displayed on the

drop-down list.

Once the code is ready, the following steps should be taken to integrate the

produced jar to the application:

• Copy the jar file into the lib folder.

• Open the applications binarization.jar file with winzip or winrar.

• Browse to the META-INF/services folder

• Open the

edu.aegean.icsdm.binarization.algorithms.spi.ICSDAlgorithm file with

a text editor.

• Enter a new line with the fully qualified name of the new algorithm’s

class e.g. org.algorithms.NewAlgorithm. Save the file.

• Browse to the META-INF folder.

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

• Open the MANIFEST.INF file with a text editor.

• Enter the jar name in the class path e.g Class-Path:

lib/AbsoluteLayout.jar, lib/NewAlgorithm.jar.

• Re-start the application.

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

8.2 Appendix B: Simulated Annealing Source Code

The class ICSDSimulatedAnnealing extends the class Thread. When the “start”

button is pressed a new Simulated Annealing session is started and a new thread is

spawned. The method run is called that contains most of the source code.

 public void run() {
 //Initialize
 newStateCounter = 0;
 ICSDAlgorithmParameter[] parameters = algorithm.getParameters();
 int parameterSize = parameters.length;
 //Restrict the initial range so that we have a smaller neighborhood
 initRange = new double[parameterSize];
 for (int i = 0; i < parameterSize; i++) {
 double range = parameters[i].getMax().intValue() - parameters[i].getMin().intValue();
 initRange[i] = range / Math.pow(NB_MAX, 3);
 //Make sure that for integers the range is at least a lower limit
 if (parameters[i].getType() == ICSDAlgorithmParameterType.INTEGER) {
 if (MIN_INTEGER_RANGE > initRange[i]) {
 initRange[i] = MIN_INTEGER_RANGE;
 } else {
 initRange[i] = (int) initRange[i];
 }
 }
 }
 //Initialize state and counters
 initState = new ICSDState(algorithm, gTImages, origImages);
 newStateCounter++;
 // Current states and their respective energies
 ICSDState s = initState;
 ICSDEnergy e = s.getEnergy();

 // Initialize the best state
 S_BEST = initState;
 Date startTime = new Date();
 ICSDMainWindow.LOGGER.log(Level.FINE, startTime.toString());
 ICSDMainWindow.LOGGER.log(Level.FINE, "New Simulated Annealing session started with

initial parameters:");
 printState(initState);
 ICSDState sNew;
 ICSDEnergy eNew;

 Random random = new Random();

 Number[] newValues = new Number[parameterSize];

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

 for (int i = 0; i < parameterSize; ++i) {
 newValues[i] = s.getParameters()[i].getValue();
 }

 // While there is time left or there is improvement,
 // and the optimum (minimum energy) is not achieved
 for (int t = 0; t < MAX_ITERS && e.compareTo(ICSDEnergy.BEST_ENERGY) > 0; t++) {

 double temp = getTemperature(t);
 ICSDMainWindow.LOGGER.log(Level.INFO, "New Temperature: " + temp);

 boolean[] aBoundReached = new boolean[parameterSize];
 boolean[] bBoundReached = new boolean[parameterSize];

 for (int i = 0; i < parameterSize; ++i) {
 aBoundReached[i] = false;
 bBoundReached[i] = false;
 }
 // Pick some neighbor and compute its energy.
 int dim = 0;
 boolean foundLocalBest = false;
 parameters = algorithm.getParameters();
 // We loop for as long as there are more parameters and the local best state is not found
 for (int k = 1; dim < parameterSize; k++) {
 // We loop for as long as there are more parameters and the boundaries of the
 // current parameter are not reached
 for (; dim < parameterSize && !(aBoundReached[dim] && bBoundReached[dim]); dim++)

{

 // Stop button pressed. Return current best state
 if (isInterrupted()) {
 ICSDMainWindow.LOGGER.log(Level.FINE, "SA execution was stopped by the user!!");
 ICSDMainWindow.LOGGER.log(Level.FINE, "Current Best State:");
 printBestState();
 Date endTime = new Date();
 ICSDMainWindow.LOGGER.log(Level.FINE, "Time Required: " + (endTime.getTime() -

startTime.getTime()) / 1000 + " secs");
 for (ICSDSimulatedAnnealingEventListener listener : listeners) {
 listener.processInterrupted();
 }
 return;
 }

 // Find the range around the current value. The new neighbourhood
 // will be [value - halfRange, value + halfRange]
 double halfRange = (initRange[dim] * k * k * k) / 2;

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

 // Find the left bound of the new neighborhood
 double newABound = parameters[dim].getMin().doubleValue();
 if (!aBoundReached[dim]) {
 newABound = s.getParameters()[dim].getValue().doubleValue() - halfRange;
 if (newABound < parameters[dim].getMin().doubleValue()) {
 newABound = parameters[dim].getMin().doubleValue();
 aBoundReached[dim] = true;
 }
 }

 // Find the right bound of the new neighbourhood
 double newBBound = parameters[dim].getMax().doubleValue();
 if (!bBoundReached[dim]) {
 newBBound = s.getParameters()[dim].getValue().doubleValue() + halfRange;
 if (newBBound > parameters[dim].getMax().doubleValue()) {
 newBBound = parameters[dim].getMax().doubleValue();
 bBoundReached[dim] = true;
 }
 }

 // Generate a new value at random from the neighborhood
 double newValue = newABound + random.nextDouble() * (newBBound - newABound);
 if (parameters[dim].getType() == ICSDAlgorithmParameterType.INTEGER) {
 newValues[dim] = (int) Math.round(newValue);
 } else {
 newValues[dim] = Double.valueOf(newValue);
 }

 ICSDMainWindow.LOGGER.log(Level.INFO, "NEW Value for " +

parameters[dim].getName() + ": " + newValues[dim]);

 // Create a new state and compare it with the original state
 algorithm.setParameterValues(newValues);
 sNew = new ICSDState(algorithm, gTImages, origImages, temp);
 newStateCounter++;
 eNew = sNew.getEnergy();
 // Diff of energy must be negative when we head to lower energy state. This means
 // that the new F-Measure must be higher
 double diffOfEnergy = e.getFMeasure() - eNew.getFMeasure();
 ICSDMainWindow.LOGGER.log(Level.INFO, "\u0394\u0395: " + diffOfEnergy);
 if (diffOfEnergy <= 0.0) {
 // We keep the state and replace the best if better
 s = sNew;
 e = eNew;
 if (eNew.compareTo(S_BEST.getEnergy()) < 0) {
 algorithm.setParameterValues(sNew.getParameters());
 S_BEST = new ICSDState(algorithm, gTImages, origImages, sNew.getTemp());

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

 newStateCounter++;
 ICSDMainWindow.LOGGER.log(Level.FINE, "New Best State found with F-MEASURE:

" + S_BEST.getEnergy().getFMeasure());
 }
 foundLocalBest = true;
 continue; // to the next parameter
 } else {
 // We calculate the probability to keep the new state
 double probability = sNew.getTemp() == 0 ? 0
 : (sNew.getTemp() / T_start) * Math.exp(-diffOfEnergy / sNew.getTemp());
 if (probability > random.nextDouble()) {
 s = sNew;
 e = eNew;
 foundLocalBest = true;
 continue; // to the next parameter
 }
 }
 }
 if (foundLocalBest) {
 break; // Calculate new temperature. One iteration is done.
 }
 }
 }
 ICSDMainWindow.LOGGER.log(Level.FINE, "Optimum Parameters found!!!");
 printBestState();
 Date endTime = new Date();
 ICSDMainWindow.LOGGER.log(Level.FINE, "Time Required: " + (endTime.getTime() -

startTime.getTime()) / 1000 + " secs");
 for (ICSDSimulatedAnnealingEventListener listener : listeners) {
 listener.processTerminated(true);
 }
 }

 /**
 * Get the temperature for the given iteration
 *
 * @param iter The current iteration
 */
 private static double getTemperature(int iter) {
 return T_start * Math.pow(1 - Math.min(1, (double) iter / (MAX_ITERS - 1)), a);
 }

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

References

[1] S. Vavilis, E. Kavallieratou, R. Paredes and K. Sotiropoulos, A Hybrid Binarization
Technique for Document Images, 375 ed., Berlin: Springer Berlin Heidelberg, 2011, pp.
165-179.

[2] W. Niblack, An Introduction to Digital image processing, Prentice Hall, 1986, pp. 115-
116.

[3] E. Badekas and N. Papamarkos, "Automatic Evaluation of Document Binarization
Results".

[4] Y. Yitzhaky and E. Peli, "A Method for Objective Edge Detection Evaluation and Detector
Parameter Selection," IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 25, no. 8, pp. 1027-1033, 2003.

[5] M. Cheriet, R. F. Moghaddam and R. Hedjam, "A learning framework for parametric
document binarization methods optimization".

[6] N. R. Howe, "Document Binarization with Automatic Parameter Tuning".

[7] J. He, Q. Do, A. C. Downton and J. H. Kim, "A Comparison of Binarization Methods for
Historical Archive Documents," ICDAR’05, 2005.

[8] I. H. Osman and G. Laporte, "Metaheuristics: A bibliography," Annals of Operational
Research, no. 63, pp. 413-623.

[9] S. Kirkpatrick, C. Gelatt and M. Vecchi, "Optimization by simulated Annealing," Science,
no. 4598, pp. 671-680, 1983.

[10] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, "Equation of state
calculations by fast computing machines," The Journal of Chemical Physics, vol. 6, no.
21, pp. 1087-1092, 1953.

[11] K. Prokopiou, "Thesis - Analysis, Design and Implementation of an Intelligent Interactive
System for ruling-line removal from document images," Helenic Open University, Patra,
2012.

[12] W. Press, S. Teukolsky, W. Vettering and B. Flannery, "Numerical Recipes in C++.
Example Book. The Art of Scientific Computing," Cambridge University Press, no. 10,
2002.

[13] "Java," [Online]. Available: http://www.java.com/en/.

[14] Oracle, "Java SE at a Glance," Oracle, [Online]. Available:

 Verras Vasileios, “A Semi-Automatic System for Fine-tuning Binarization

 Algorithms”

http://www.oracle.com/technetwork/java/javase/overview/index.html.

[15] Oracle, "Java Advanced Imaging," Oracle, [Online]. Available:
http://www.oracle.com/technetwork/java/javase/tech/jai-142803.html.

[16] Netbeans, "NetBeans IDE 7.1.1," Netbeans, [Online]. Available: http://netbeans.org/.

[17] P. Stathis, E. Kavallieratou and N. Papamarkos, "An Evaluation Technique for
Binarization Algorithms," Journal of Universal Science, vol. 14, no. 18, pp. 3011-3030,
2008.

	1. Introduction
	1.1 Image Binarization Problem
	1.2 Scope of this thesis
	2. Related work
	3. The three included algorithms
	3.1 Niblack
	3.2 Hybrid Iterative Global Thresholding (H-IGT)
	 Application of Iterative Global Thresholding
	 Noisy area detection
	 Re-application of IGT (Local Thresholding)
	3.3 Fixed Window Local Thresholding (FWLT)
	4. Simulated Annealing
	4.1 Detailed implementation of Simulated Annealing
	5. Implementation of the system
	5.1 Tools used
	5.2 Main Window
	5.2.1 Toolbar
	/
	5.2.2 Image Display
	5.2.3 Algorithm Selection, Configuration and Application
	5.2.4 Log Area
	/
	5.3 Logging
	6. Evaluation of the system
	6.1 H-IGT on DIBCO’11
	6.2 FWLT on random document.
	6.2.1 Brute Force
	6.2.2 Simulated Annealing
	//
	6.3 Estimation of required GT images.
	6.4 Comparison of different fine tuning methodologies and binarization algorithms
	7. Conclusion and future development.

	8. Appendices
	8.1 Appendix A: Algorithm developer manual
	8.2 Appendix B: Simulated Annealing Source Code

